22 research outputs found

    Ileosigmoid fistula and delayed ileal obstruction secondary to blunt abdominal trauma: a case report

    Get PDF
    <p>Abstract</p> <p>Introduction</p> <p>Abdominal trauma is a source of significant mortality and morbidity. Bowel injury as a result of blunt abdominal trauma is usually evident within hours or days of the accident.</p> <p>Case presentation</p> <p>A 38-year-old Caucasian Greek man presented with a subtle and delayed small bowel obstruction caused by a post-traumatic ileosigmoid fistula and ileal stricture four months after a road traffic accident.</p> <p>Conclusion</p> <p>Delayed occurrence of post-traumatic small bowel stricture and ileosigmoid fistula is an uncommon surgical emergency. General surgeons as well as emergency physicians should bear this manifestation in mind should a patient return to the hospital several weeks or even years after blunt abdominal trauma with symptoms or signs of bowel obstruction.</p

    The Expression and Localization of N-Myc Downstream-Regulated Gene 1 in Human Trophoblasts

    Get PDF
    The protein N-Myc downstream-regulated gene 1 (NDRG1) is implicated in the regulation of cell proliferation, differentiation, and cellular stress response. NDRG1 is expressed in primary human trophoblasts, where it promotes cell viability and resistance to hypoxic injury. The mechanism of action of NDRG1 remains unknown. To gain further insight into the intracellular action of NDRG1, we analyzed the expression pattern and cellular localization of endogenous NDRG1 and transfected Myc-tagged NDRG1 in human trophoblasts exposed to diverse injuries. In standard conditions, NDRG1 was diffusely expressed in the cytoplasm at a low level. Hypoxia or the hypoxia mimetic cobalt chloride, but not serum deprivation, ultraviolet (UV) light, or ionizing radiation, induced the expression of NDRG1 in human trophoblasts and the redistribution of NDRG1 into the nucleus and cytoplasmic membranes associated with the endoplasmic reticulum (ER) and microtubules. Mutation of the phosphopantetheine attachment site (PPAS) within NDRG1 abrogated this pattern of redistribution. Our results shed new light on the impact of cell injury on NDRG1 expression patterns, and suggest that the PPAS domain plays a key role in NDRG1's subcellular distribution. © 2013 Shi et al

    Safety of liver resection and effect on quality of life in patients with benign hepatic disease: Single center experience

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Although liver resection has long been established for selected patients with benign hepatic disease, the success of surgical treatment of these patients cannot be evaluated exclusively through postoperative morbidity and mortality. Therefore, the aim of the study was to prove the safety of liver resection in the treatment of benign liver tumors and to evaluate the effect of surgical treatment on the patients' qauality of life.</p> <p>Methods</p> <p>A total of 146 patients who underwent liver resection because of benign liver tumors were included in this study. Postoperative outcome was assessed and patients evaluated their quality of life before surgery and at the present time using the European Organization for Research and Treatment of Cancer Quality of Life Questionnaire Core-30 (QLQ C-30).</p> <p>Results</p> <p>The rate of serious (> grade 2) complications was 4.1% with no postoperative death. The quality of life assessment revealed an overall improvement of general health status after resection (0.7 vs. 0.56, p < 0.001) and additionally a significant reduction of 6 out of 9 symptoms. Furthermore, compelling benefits in the patients' social and emotional coping could be detected after surgery.</p> <p>Conclusions</p> <p>Liver resection for benign liver disease is a safe procedure and leads to a significant improvement of quality of life in selected patients.</p

    Thermodynamics of Aryl-Dihydroxyphenyl-Thiadiazole Binding to Human Hsp90

    Get PDF
    The design of specific inhibitors against the Hsp90 chaperone and other enzyme relies on the detailed and correct understanding of both the thermodynamics of inhibitor binding and the structural features of the protein-inhibitor complex. Here we present a detailed thermodynamic study of binding of aryl-dihydroxyphenyl-thiadiazole inhibitor series to recombinant human Hsp90 alpha isozyme. The inhibitors are highly potent, with the intrinsic Kd approximately equal to 1 nM as determined by isothermal titration calorimetry (ITC) and thermal shift assay (TSA). Dissection of protonation contributions yielded the intrinsic thermodynamic parameters of binding, such as enthalpy, entropy, Gibbs free energy, and the heat capacity. The differences in binding thermodynamic parameters between the series of inhibitors revealed contributions of the functional groups, thus providing insight into molecular reasons for improved or diminished binding efficiency. The inhibitor binding to Hsp90 alpha primarily depended on a large favorable enthalpic contribution combined with the smaller favorable entropic contribution, thus suggesting that their binding was both enthalpically and entropically optimized. The enthalpy-entropy compensation phenomenon was highly evident when comparing the inhibitor binding enthalpies and entropies. This study illustrates how detailed thermodynamic analysis helps to understand energetic reasons for the binding efficiency and develop more potent inhibitors that could be applied for therapeutic use as Hsp90 inhibitors

    Heat Shock Proteins and Amateur Chaperones in Amyloid-Beta Accumulation and Clearance in Alzheimer’s Disease

    Get PDF
    The pathologic lesions of Alzheimer’s disease (AD) are characterized by accumulation of protein aggregates consisting of intracellular or extracellular misfolded proteins. The amyloid-β (Aβ) protein accumulates extracellularly in senile plaques and cerebral amyloid angiopathy, whereas the hyperphosphorylated tau protein accumulates intracellularly as neurofibrillary tangles. “Professional chaperones”, such as the heat shock protein family, have a function in the prevention of protein misfolding and subsequent aggregation. “Amateur” chaperones, such as apolipoproteins and heparan sulfate proteoglycans, bind amyloidogenic proteins and may affect their aggregation process. Professional and amateur chaperones not only colocalize with the pathological lesions of AD, but may also be involved in conformational changes of Aβ, and in the clearance of Aβ from the brain via phagocytosis or active transport across the blood–brain barrier. Thus, both professional and amateur chaperones may be involved in the aggregation, accumulation, persistence, and clearance of Aβ and tau and in other Aβ-associated reactions such as inflammation associated with AD lesions, and may, therefore, serve as potential targets for therapeutic intervention
    corecore