27 research outputs found

    Equivalence and noninferiority trials – are they viable alternatives for registration of new drugs? (III)

    Get PDF
    The scientific community's reliance on active-controlled trials is steadily increasing, as widespread agreement emerges concerning the role of these trials as viable alternatives to placebo trials. These trials present substantial challenges with regard to design and interpretation as their complexity increases, and the potential need for larger sample sizes impacts the cost and time variables of the drug development process. The potential efficacy and safety benefits derived from these trials may never be demonstrated by other methods. Active-controlled trials can develop valuable data to inform both prescribers and patients about the dose- and time-dependent actions of any new drug and can contribute to the management and communication of risks associated with the relevant therapeutic products

    Evidence for the two-body charmless baryonic decay B+→pΛ‾ {B}^{+}\to p\overline{\varLambda}

    Get PDF
    See paper for full list of authors - All figures and tables, along with any supplementary material and additional information, are available at https://lhcbproject.web.cern.ch/lhcbproject/Publications/LHCbProjectPublic/LHCb-PAPER-2016-048.html - Submitted to JHEPInternational audienceA search for the rare two-body charmless baryonic decay B+→pΛˉB^+ \to p \bar\Lambda is performed with pppp collision data, corresponding to an integrated luminosity of 3\mbox{\,fb}^{-1}, collected by the LHCb experiment at centre-of-mass energies of 7 and 8 TeV. An excess of B+→pΛˉB^+ \to p \bar\Lambda candidates with respect to background expectations is seen with a statistical significance of 4.1 standard deviations, and constitutes the first evidence for this decay. The branching fraction, measured using the B+→KS0π+B^+ \to K^0_{\mathrm S} \pi^+ decay for normalisation, is \begin{eqnarray} \mathcal{B}(B^+ \to p \bar\Lambda) & = & ( 2.4 \,^{+1.0}_{-0.8} \pm 0.3 ) \times 10^{-7} \,, \nonumber \end{eqnarray} where the first uncertainty is statistical and the second systematic

    Magnetoelectric Effect in Ceramics Based on Bismuth Ferrite

    Get PDF
    Solid-state sintering method was used to prepare ceramic materials based on bismuth ferrite, i.e., (BiFeO3)1 − x–(BaTiO3)x and Bi1 − xNdxFeO3 solid solutions and the Aurivillius Bi5Ti3FeO15 compound. The structure of the materials was examined using X-ray diffraction, and the Rietveld method was applied to phase analysis and structure refinement. Magnetoelectric coupling was registered in all the materials using dynamic lock-in technique. The highest value of magnetoelectric coupling coefficient αME was obtained for the Bi5Ti3FeO15 compound (αME ~ 10 mVcm−1 Oe−1). In the case of (BiFeO3)1 − x–(BaTiO3)x and Bi1 − xNdxFeO3 solid solutions, the maximum αME is of the order of 1 and 2.7 mVcm−1 Oe−1, respectively. The magnitude of magnetoelectric coupling is accompanied with structural transformation in the studied solid solutions. The relatively high magnetoelectric effect in the Aurivillius Bi5Ti3FeO15 compound is surprising, especially since the material is paramagnetic at room temperature. When the materials were subjected to a preliminary electrical poling, the magnitude of the magnetoelectric coupling increased 2–3 times
    corecore