23 research outputs found

    Detection of high-frequency oscillations by hybrid depth electrodes in standard clinical intracranial EEG recordings

    Get PDF
    High-frequency oscillations (HFOs) have been proposed as a novel marker for epileptogenic tissue, spurring tremendous research interest into the characterization of these transient events. A wealth of continuously recorded intracranial electroencephalographic (iEEG) data is currently available from patients undergoing invasive monitoring for the surgical treatment of epilepsy. In contrast to data recorded on research-customized recording systems, data from clinical acquisition systems remain an underutilized resource for HFO detection in most centers. The effective and reliable use of this clinically obtained data would be an important advance in the ongoing study of HFOs and their relationship to ictogenesis. The diagnostic utility of HFOs ultimately will be limited by the ability of clinicians to detect these brief, sporadic, and low amplitude events in an electrically noisy clinical environment. Indeed, one of the most significant factors limiting the use of such clinical recordings for research purposes is their low signal to noise ratio, especially in the higher frequency bands. In order to investigate the presence of HFOs in clinical data, we first obtained continuous intracranial recordings in a typical clinical environment using a commercially available, commonly utilized data acquisition system and "off the shelf" hybrid macro-/micro-depth electrodes. These data were then inspected for the presence of HFOs using semi-automated methods and expert manual review. With targeted removal of noise frequency content, HFOs were detected on both macro- and micro-contacts, and preferentially localized to seizure onset zones. HFOs detected by the offline, semi-automated method were also validated in the clinical viewer, demonstrating that (1) this clinical system allows for the visualization of HFOs and (2) with effective signal processing, clinical recordings can yield valuable information for offline analysis. © 2014 Kondylis, Wozny, Lipski, Popescu, DeStefino, Esmaeili, Raghu, Bagic and Richardson

    Deep learning of the retina enables phenome- and genome-wide analyses of the microvasculature.

    Get PDF
    Background: The microvasculature, the smallest blood vessels in the body, has key roles in maintenance of organ health as well as tumorigenesis. The retinal fundus is a window for human in vivo non-invasive assessment of the microvasculature. Large-scale complementary machine learning-based assessment of the retinal vasculature with phenome-wide and genome-wide analyses may yield new insights into human health and disease. Methods: We utilized 97,895 retinal fundus images from 54,813 UK Biobank participants. Using convolutional neural networks to segment the retinal microvasculature, we calculated fractal dimension (FD) as a measure of vascular branching complexity, and vascular density. We associated these indices with 1,866 incident ICD-based conditions (median 10y follow-up) and 88 quantitative traits, adjusting for age, sex, smoking status, and ethnicity. Results: Low retinal vascular FD and density were significantly associated with higher risks for incident mortality, hypertension, congestive heart failure, renal failure, type 2 diabetes, sleep apnea, anemia, and multiple ocular conditions, as well as corresponding quantitative traits. Genome-wide association of vascular FD and density identified 7 and 13 novel loci respectively, which were enriched for pathways linked to angiogenesis (e.g., VEGF, PDGFR, angiopoietin, and WNT signaling pathways) and inflammation (e.g., interleukin, cytokine signaling). Conclusions: Our results indicate that the retinal vasculature may serve as a biomarker for future cardiometabolic and ocular disease and provide insights on genes and biological pathways influencing microvascular indices. Moreover, such a framework highlights how deep learning of images can quantify an interpretable phenotype for integration with electronic health records, biomarker, and genetic data to inform risk prediction and risk modification
    corecore