21 research outputs found

    Genetic analysis of quantitative phenotypes in AD and MCI: imaging, cognition and biomarkers

    Get PDF

    On a biophysical and mathematical model of pgp-mediated multidrug resistance: understanding the “space–time” dimension of MDR

    No full text
    Multidrug resistance (MDR) is explained by drug transporters with a drug-handling activity. Despite much work, MDR remains multifaceted, and several conditions are required to generate drug resistance. The drug pumping was conceptually described using a kinetic, i.e., temporal, approach. The re-emergence of physical biology has allowed us to take into account new parameters focusing on the notion of space. This, in turn, has given us important clues regarding the process whereby drug and transporter interact. We will demonstrate that the likelihood of drug-transporter meeting (i.e., the affinity) and thus interaction are also driven by the mechanical interaction between drug molecular weight (MW) and the membrane mechanical properties. This should allow us to mechanically control drug delivery

    Structure–Activity Relationships and Quantitative Structure–Activity Relationships for Breast Cancer Resistance Protein (ABCG2)

    No full text
    Breast cancer resistance protein (ABCG2), the newest ABC transporter, was discovered independently by three groups in the late 1990s. ABCG2 is widely distributed in the body with expression in the brain, intestine, and liver, among others. ABCG2 plays an important role by effluxing drugs at the blood–brain, blood–testis, and maternal–fetal barriers and in the efflux of xenobiotics at the small intestine and kidney proximal tubule brush border and liver canalicular membranes. ABCG2 transports a wide variety of substrates including HMG-CoA reductase inhibitors, antibiotics, and many anticancer agents and is one contributor to multidrug resistance in cancer cells. Quantitative structure–activity relationship (QSAR) models and structure–activity relationships (SARs) are often employed to predict ABCG2 substrates and inhibitors prior to in vitro and in vivo studies. QSAR models correlate in vivo biological activity to physicochemical properties of compounds while SARs attempt to explain chemical moieties or structural features that contribute to or are detrimental to the biological activity. Most ABCG2 datasets available for in silico modeling are comprised of congeneric series of compounds; the results from one series usually cannot be applied to another series of compounds. This review will focus on in silico models in the literature used for the prediction of ABCG2 substrates and inhibitors
    corecore