11 research outputs found

    Differential Pathogenesis of Lung Adenocarcinoma Subtypes Involving Sequence Mutations, Copy Number, Chromosomal Instability, and Methylation

    Get PDF
    Lung adenocarcinoma (LAD) has extreme genetic variation among patients, which is currently not well understood, limiting progress in therapy development and research. LAD intrinsic molecular subtypes are a validated stratification of naturally-occurring gene expression patterns and encompass different functional pathways and patient outcomes. Patients may have incurred different mutations and alterations that led to the different subtypes. We hypothesized that the LAD molecular subtypes co-occur with distinct mutations and alterations in patient tumors.The LAD molecular subtypes (Bronchioid, Magnoid, and Squamoid) were tested for association with gene mutations and DNA copy number alterations using statistical methods and published cohorts (n = 504). A novel validation (n = 116) cohort was assayed and interrogated to confirm subtype-alteration associations. Gene mutation rates (EGFR, KRAS, STK11, TP53), chromosomal instability, regional copy number, and genomewide DNA methylation were significantly different among tumors of the molecular subtypes. Secondary analyses compared subtypes by integrated alterations and patient outcomes. Tumors having integrated alterations in the same gene associated with the subtypes, e.g. mutation, deletion and underexpression of STK11 with Magnoid, and mutation, amplification, and overexpression of EGFR with Bronchioid. The subtypes also associated with tumors having concurrent mutant genes, such as KRAS-STK11 with Magnoid. Patient overall survival, cisplatin plus vinorelbine therapy response and predicted gefitinib sensitivity were significantly different among the subtypes.The lung adenocarcinoma intrinsic molecular subtypes co-occur with grossly distinct genomic alterations and with patient therapy response. These results advance the understanding of lung adenocarcinoma etiology and nominate patient subgroups for future evaluation of treatment response

    Amplification of SOX4 promotes PI3K/Akt signaling in human breast cancer

    No full text
    PURPOSE: The PI3K/Akt signaling axis contributes to the dysregulation of many dominant features in breast cancer including cell proliferation, survival, metabolism, motility and genomic instability. While multiple studies have demonstrated that basal-like or triple negative breast tumors have uniformly high PI3K/Akt activity, genomic alterations that mediate dysregulation of this pathway in this subset of highly aggressive breast tumors remain to be determined. METHODS: In this study, we present an integrated genomic analysis based on the use of a PI3K gene expression signature as a framework to analyze orthogonal genomic data from human breast tumors, including RNA expression, DNA copy number alterations, and protein expression. In combination with data from a genome-wide RNA-mediated interference screen in human breast cancer cell lines we identified essential genetic drivers of PI3K/Akt signaling. RESULTS: Our in silico analyses identified SOX4 amplification as a novel modulator of PI3K/Akt signaling in breast cancers and in vitro studies confirmed its role in regulating Akt phosphorylation. CONCLUSIONS: Taken together, these data establish a role for SOX4 mediated PI3K/Akt signaling in breast cancer and suggest that SOX4 may represent a novel therapeutic target and/or biomarker for current PI3K-family therapies

    An integrated genomics approach identifies drivers of proliferation in luminal-subtype human breast cancer

    No full text
    Elucidating the molecular drivers of human breast cancers requires a strategy capable of integrating multiple forms of data and an ability to interpret the functional consequences of a given genetic aberration. Here we present an integrated genomic strategy based on the use of gene expression signatures of oncogenic pathway activity (n=52) as a framework to analyze DNA copy number alterations in combination with data from a genome-wide RNAi screen. We identify specific DNA amplifications, and importantly, essential genes within these amplicons representing key genetic drivers, including known and novel regulators of oncogenesis. The genes identified include eight that are essential for cell proliferation (FGD5, METTL6, CPT1A, DTX3, MRPS23, EIF2S2, EIF6 and SLC2A10) and are uniquely amplified in patients with highly proliferative luminal breast tumors, a clinical subset of patients for which few therapeutic options are effective. Our results demonstrate that this general strategy has the potential to identify putative therapeutic targets within amplicons through an integrated use of genetic, genomic, and genome-wide RNAi data sets
    corecore