28 research outputs found

    Transmission of Aerosolized Seasonal H1N1 Influenza A to Ferrets

    Get PDF
    Influenza virus is a major cause of morbidity and mortality worldwide, yet little quantitative understanding of transmission is available to guide evidence-based public health practice. Recent studies of influenza non-contact transmission between ferrets and guinea pigs have provided insights into the relative transmission efficiencies of pandemic and seasonal strains, but the infecting dose and subsequent contagion has not been quantified for most strains. In order to measure the aerosol infectious dose for 50% (aID50) of seronegative ferrets, seasonal influenza virus was nebulized into an exposure chamber with controlled airflow limiting inhalation to airborne particles less than 5 µm diameter. Airborne virus was collected by liquid impinger and Teflon filters during nebulization of varying doses of aerosolized virus. Since culturable virus was accurately captured on filters only up to 20 minutes, airborne viral RNA collected during 1-hour exposures was quantified by two assays, a high-throughput RT-PCR/mass spectrometry assay detecting 6 genome segments (Ibis T5000™ Biosensor system) and a standard real time RT-qPCR assay. Using the more sensitive T5000 assay, the aID50 for A/New Caledonia/20/99 (H1N1) was approximately 4 infectious virus particles under the exposure conditions used. Although seroconversion and sustained levels of viral RNA in upper airway secretions suggested established mucosal infection, viral cultures were almost always negative. Thus after inhalation, this seasonal H1N1 virus may replicate less efficiently than H3N2 virus after mucosal deposition and exhibit less contagion after aerosol exposure

    OptCircuit: An optimization based method for computational design of genetic circuits

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Recent years has witnessed an increasing number of studies on constructing simple synthetic genetic circuits that exhibit desired properties such as oscillatory behavior, inducer specific activation/repression, etc. It has been widely acknowledged that that task of building circuits to meet multiple inducer-specific requirements is a challenging one. This is because of the incomplete description of component interactions compounded by the fact that the number of ways in which one can chose and interconnect components, increases exponentially with the number of components.</p> <p>Results</p> <p>In this paper we introduce OptCircuit, an optimization based framework that automatically identifies the circuit components from a list and connectivity that brings about the desired functionality. Multiple literature sources are used to compile a comprehensive compilation of kinetic descriptions of promoter-protein pairs. The dynamics that govern the interactions between the elements of the genetic circuit are currently modeled using deterministic ordinary differential equations but the framework is general enough to accommodate stochastic simulations. The desired circuit response is abstracted as the maximization/minimization of an appropriately constructed objective function. Computational results for a toggle switch example demonstrate the ability of the framework to generate the complete list of circuit designs of varying complexity that exhibit the desired response. Designs identified for a genetic decoder highlight the ability of OptCircuit to suggest circuit configurations that go beyond the ones compatible with digital logic-based design principles. Finally, the results obtained from the concentration band detector example demonstrate the ability of OptCircuit to design circuits whose responses are contingent on the level of external inducer as well as pinpoint parameters for modification to rectify an existing (non-functional) biological circuit and restore functionality.</p> <p>Conclusion</p> <p>Our results demonstrate that OptCircuit framework can serve as a design platform to aid in the construction and finetuning of integrated biological circuits.</p

    Exhaled Aerosol Transmission of Pandemic and Seasonal H1N1 Influenza Viruses in the Ferret

    Get PDF
    Person-to-person transmission of influenza viruses occurs by contact (direct and fomites) and non-contact (droplet and small particle aerosol) routes, but the quantitative dynamics and relative contributions of these routes are incompletely understood. The transmissibility of influenza strains estimated from secondary attack rates in closed human populations is confounded by large variations in population susceptibilities. An experimental method to phenotype strains for transmissibility in an animal model could provide relative efficiencies of transmission. We developed an experimental method to detect exhaled viral aerosol transmission between unanesthetized infected and susceptible ferrets, measured aerosol particle size and number, and quantified the viral genomic RNA in the exhaled aerosol. During brief 3-hour exposures to exhaled viral aerosols in airflow-controlled chambers, three strains of pandemic 2009 H1N1 strains were frequently transmitted to susceptible ferrets. In contrast one seasonal H1N1 strain was not transmitted in spite of higher levels of viral RNA in the exhaled aerosol. Among three pandemic strains, the two strains causing weight loss and illness in the intranasally infected ‘donor’ ferrets were transmitted less efficiently from the donor than the strain causing no detectable illness, suggesting that the mucosal inflammatory response may attenuate viable exhaled virus. Although exhaled viral RNA remained constant, transmission efficiency diminished from day 1 to day 5 after donor infection. Thus, aerosol transmission between ferrets may be dependent on at least four characteristics of virus-host relationships including the level of exhaled virus, infectious particle size, mucosal inflammation, and viral replication efficiency in susceptible mucosa

    The Seventeenth Data Release of the Sloan Digital Sky Surveys: Complete Release of MaNGA, MaStar, and APOGEE-2 Data

    Get PDF
    This paper documents the seventeenth data release (DR17) from the Sloan Digital Sky Surveys; the fifth and final release from the fourth phase (SDSS-IV). DR17 contains the complete release of the Mapping Nearby Galaxies at Apache Point Observatory (MaNGA) survey, which reached its goal of surveying over 10,000 nearby galaxies. The complete release of the MaNGA Stellar Library accompanies this data, providing observations of almost 30,000 stars through the MaNGA instrument during bright time. DR17 also contains the complete release of the Apache Point Observatory Galactic Evolution Experiment 2 survey that publicly releases infrared spectra of over 650,000 stars. The main sample from the Extended Baryon Oscillation Spectroscopic Survey (eBOSS), as well as the subsurvey Time Domain Spectroscopic Survey data were fully released in DR16. New single-fiber optical spectroscopy released in DR17 is from the SPectroscipic IDentification of ERosita Survey subsurvey and the eBOSS-RM program. Along with the primary data sets, DR17 includes 25 new or updated value-added catalogs. This paper concludes the release of SDSS-IV survey data. SDSS continues into its fifth phase with observations already underway for the Milky Way Mapper, Local Volume Mapper, and Black Hole Mapper surveys

    Elasmobranch bycatch in US West Coast groundfish fisheries

    No full text
    Effective management of multispecies fisheries in large marine ecosystems is challenging. To deal with these challenges, fisheries managers are moving toward ecosystem-based fishery management (EBFM). Despite this shift, many species remain outside protective legislation or fishery management plans. How do species that fall outside of formal management structures respond to changes in fisheries management strategies? In 2011, the US West Coast Groundfish Fishery (WCGF) shifted management to an Individual Fishing Quota (IFQ) program. We used data collected by fisheries observers to examine the impact of this shift on elasmobranch catch (sharks, skates, rays). Historically, not all elasmobranchs were included in the WCGF Management Plan, making them vulnerable to fishing mortality. We grouped elasmobranchs into 8 groups based on 14 ecomorphotypes to examine relative catch within groundfish fishing sectors during the period 2002-2014. Of the 22 sharks and 18 skates and rays that these fisheries capture, 9 are listed as Near Threatened or greater on the IUCN Red List and 10 species are listed as Data Deficient by IUCN. The bycatch of 4 non-managed elasmobranch species was reduced under the IFQ program; IFQ management had no significant impact on the remaining 27 species caught by the IFQ fleet. Overall, catch of non-managed elasmobranchs was relatively low. We show that groups of ecomorphotypes co-occur within fisheries, suggesting natural management units for use in EBFM. This work helps identify gaps in monitoring and assessing the impact of management and policy on elasmobranch populations.</jats:p
    corecore