20 research outputs found

    Identification and characterization of Coronaviridae genomes from Vietnamese bats and rats based on conserved protein domains.

    Get PDF
    The Coronaviridae family of viruses encompasses a group of pathogens with a zoonotic potential as observed from previous outbreaks of the severe acute respiratory syndrome coronavirus and Middle East respiratory syndrome coronavirus. Accordingly, it seems important to identify and document the coronaviruses in animal reservoirs, many of which are uncharacterized and potentially missed by more standard diagnostic assays. A combination of sensitive deep sequencing technology and computational algorithms is essential for virus surveillance, especially for characterizing novel- or distantly related virus strains. Here, we explore the use of profile Hidden Markov Model-defined Pfam protein domains (Pfam domains) encoded by new sequences as a Coronaviridae sequence classification tool. The encoded domains are used first in a triage to identify potential Coronaviridae sequences and then processed using a Random Forest method to classify the sequences to the Coronaviridae genus level. The application of this algorithm on Coronaviridae genomes assembled from agnostic deep sequencing data from surveillance of bats and rats in Dong Thap province (Vietnam) identified thirty-four Alphacoronavirus and eleven Betacoronavirus genomes. This collection of bat and rat coronaviruses genomes provided essential information on the local diversity of coronaviruses and substantially expanded the number of coronavirus full genomes available from bat and rats and may facilitate further molecular studies on this group of viruses

    No Exchange of Picornaviruses in Vietnam between Humans and Animals in a High-Risk Cohort with Close Contact despite High Prevalence and Diversity

    Get PDF
    Hospital-based and community-based ‘high-risk cohort’ studies investigating humans at risk of zoonotic infection due to occupational or residential exposure to animals were conducted in Vietnam, with diverse viruses identified from faecal samples collected from humans, domestic and wild animals. In this study, we focus on the positive-sense RNA virus family Picornaviridae, investigating the prevalence, diversity, and potential for cross-species transmission. Through metagenomic sequencing, we found picornavirus contigs in 23% of samples, belonging to 15 picornavirus genera. Prevalence was highest in bats (67%) while diversity was highest in rats (nine genera). In addition, 22% of the contigs were derived from novel viruses: Twelve phylogenetically distinct clusters were observed in rats of which seven belong to novel species or types in the genera Hunnivirus, Parechovirus, Cardiovirus, Mosavirus and Mupivirus; four distinct clusters were found in bats, belonging to one novel parechovirus species and one related to an unclassified picornavirus. There was no evidence for zoonotic transmission in our data. Our study provides an improved knowledge of the diversity and prevalence of picornaviruses, including a variety of novel picornaviruses in rats and bats. We highlight the importance of monitoring the human–animal interface for possible spill-over events

    Characterization of Posa and Posa-like virus genomes in fecal samples from humans, pigs, rats, and bats collected from a single location in Vietnam.

    Get PDF
    Porcine stool-associated RNA virus (posavirus), and Human stool-associated RNA virus (husavirus) are viruses in the order Picornavirales recently described in porcine and human fecal samples. The tentative group (Posa and Posa-like viruses: PPLVs) also includes fish stool-associated RNA virus (fisavirus) as well as members detected in insects (Drosophila subobscura and Anopheles sinensis) and parasites (Ascaris suum). As part of an agnostic deep sequencing survey of animal and human viruses in Vietnam, we detected three husaviruses in human fecal samples, two of which share 97-98% amino acid identity to Dutch husavirus strains and one highly divergent husavirus with only 25% amino acid identity to known husaviruses. In addition, the current study found forty-seven complete posavirus genomes from pigs, ten novel rat stool-associated RNA virus genomes (tentatively named rasavirus), and sixteen novel bat stool-associated RNA virus genomes (tentatively named basavirus). The five expected Picornavirales protein domains (helicase, 3C-protease, RNA-dependent RNA polymerase, and two Picornavirus capsid domain) were found to be encoded by all PPLV genomes. In addition, a nucleotide composition analysis revealed that the PPLVs shared compositional properties with arthropod viruses and predicted non-mammalian hosts for all PPLV lineages. The study adds seventy-six genomes to the twenty-nine PPLV genomes currently available and greatly extends our sequence knowledge of this group of viruses within the Picornavirales order

    Occupational Animal Contact in Southern and Central Vietnam

    Get PDF
    Despite the global zoonotic disease burden, the underlying exposures that drive zoonotic disease emergence are not understood. Here, we aimed to assess exposures to potential sources of zoonotic disease and investigate the demographics, attitudes, and behavior of individuals with sustained occupational animal contact in Vietnam. We recruited 581 animal workers (animal-raising farmers, slaughterers, animal health workers, and rat traders) and their families in southern and central Vietnam into a cohort. Cohort members were followed for 3 years and interviewed annually regarding (1) demography and attitudes regarding zoonotic disease, (2) medical history, (3) specific exposures to potential zoonotic infection sources, and (4) socioeconomic status. Interview information over the 3 years was combined and analyzed as cross-sectional data. Of the 297 cohort members interviewed, the majority (79.8%; 237/297) reported raising livestock; almost all (99.6%; 236/237) reported being routinely exposed to domestic animals, and more than a quarter (28.7%; 68/237) were exposed to exotic animals. Overall, 70% (208/297) reported slaughtering exotic animals; almost all (99.5%; 207/208) reported consuming such animals. The consumption of raw blood and meat was common (24.6%; 73/297 and 37%; 110/297, respectively). Over half (58.6%; 174/297) reported recent occupational animal-induced injuries that caused bleeding; the use of personal protective equipment (PPE) was limited. Our work demonstrates that individuals working with animals in Vietnam are exposed to a wide range of species, and there are limited procedures for reducing potential zoonotic disease exposures. We advocate better education, improved animal security, and enforced legislation of PPE for those with occupational animal exposure in Vietnam.Peer reviewe

    Genetic diversity and cross-species transmission of kobuviruses in Vietnam.

    Get PDF
    Cross-species transmission of viruses poses a sustained threat to public health. Due to increased contact between humans and other animal species the possibility exists for cross-species transmissions and ensuing disease outbreaks. By using conventional PCR amplification and next generation sequencing, we obtained 130 partial or full genome kobuvirus sequences from humans in a sentinel cohort in Vietnam and various mammalian hosts including bats, rodents, pigs, cats, and civets. The evolution of kobuviruses in different hosts was analysed using Bayesian phylogenetic methods. We estimated and compared time of origin of kobuviruses in different host orders; we also examined the cross-species transmission of kobuviruses within the same host order and between different host orders. Our data provide new knowledge of rodent and bat kobuviruses, which are most closely related to human kobuviruses. The novel bat kobuviruses isolated from bat roosts in Southern Vietnam were genetically distinct from previously described bat kobuviruses, but closely related to kobuviruses found in rodents. We additionally found evidence of frequent cross-species transmissions of kobuviruses within rodents. Overall, our phylogenetic analyses reveal multiple cross-species transmissions both within and among mammalian species, which increases our understanding of kobuviruses genetic diversity and the complexity of their evolutionary history

    Redondoviridae: High Prevalence and Possibly Chronic Shedding in Human Respiratory Tract, But No Zoonotic Transmission

    Get PDF
    Redondoviridae is a recently discovered DNA virus family consisting of two species, vientovirus and brisavirus. Here we used PCR amplification and sequencing to characterize redondoviruses in nasal/throat swabs collected longitudinally from a cohort of 58 individuals working with animals in Vietnam. We additionally analyzed samples from animals to which redondovirus DNA-positive participants were exposed. Redondoviruses were detected in approximately 60% of study participants, including 33% (30/91) of samples collected during episodes of acute respiratory disease and in 50% (29/58) of baseline samples (with no respiratory symptoms). Vientovirus (73%; 24/33) was detected more frequently in samples than brisaviruses (27%; 9/33). In the 23 participants with at least 2 redondovirus-positive samples among their longitudinal samples, 10 (43.5%) had identical redondovirus replication-gene sequences detected (sampling duration: 35–132 days). We found no identical redondovirus replication genes in samples from different participants, and no redondoviruses were detected in 53 pooled nasal/throat swabs collected from domestic animals. Phylogenetic analysis described no large-scale geographical clustering between viruses from Vietnam, the US, Spain, and China, indicating that redondoviruses are highly genetically diverse and have a wide geographical distribution. Collectively, our study provides novel insights into the Redondoviridae family in humans, describing a high prevalence, potentially associated with chronic shedding in the respiratory tract with lack of evidence of zoonotic transmission from close animal contacts. The tropism and potential pathogenicity of this viral family remain to be determined

    Redondoviridae: High Prevalence and Possibly Chronic Shedding in Human Respiratory Tract, But No Zoonotic Transmission

    Get PDF
    Redondoviridae is a recently discovered DNA virus family consisting of two species, vientovirus and brisavirus. Here we used PCR amplification and sequencing to characterize redondoviruses in nasal/throat swabs collected longitudinally from a cohort of 58 individuals working with animals in Vietnam. We additionally analyzed samples from animals to which redondovirus DNA-positive participants were exposed. Redondoviruses were detected in approximately 60% of study participants, including 33% (30/91) of samples collected during episodes of acute respiratory disease and in 50% (29/58) of baseline samples (with no respiratory symptoms). Vientovirus (73%; 24/33) was detected more frequently in samples than brisaviruses (27%; 9/33). In the 23 participants with at least 2 redondovirus-positive samples among their longitudinal samples, 10 (43.5%) had identical redondovirus replication-gene sequences detected (sampling duration: 35–132 days). We found no identical redondovirus replication genes in samples from different participants, and no redondoviruses were detected in 53 pooled nasal/throat swabs collected from domestic animals. Phylogenetic analysis described no large-scale geographical clustering between viruses from Vietnam, the US, Spain, and China, indicating that redondoviruses are highly genetically diverse and have a wide geographical distribution. Collectively, our study provides novel insights into the Redondoviridae family in humans, describing a high prevalence, potentially associated with chronic shedding in the respiratory tract with lack of evidence of zoonotic transmission from close animal contacts. The tropism and potential pathogenicity of this viral family remain to be determined

    Detection of potentially novel paramyxovirus and coronavirus viral RNA in bats and rats in the Mekong Delta region of southern Viet Nam.

    Get PDF
    Bats and rodents are being increasingly recognized as reservoirs of emerging zoonotic viruses. Various studies have investigated bat viruses in tropical regions, but to date there are no data regarding viruses with zoonotic potential that circulate in bat and rat populations in Viet Nam. To address this paucity of data, we sampled three bat farms and three wet markets trading in rat meat in the Mekong Delta region of southern Viet Nam. Faecal and urine samples were screened for the presence of RNA from paramyxoviruses, coronaviruses and filoviruses. Paramyxovirus RNA was detected in 4 of 248 (1%) and 11 of 222 (4.9%) bat faecal and urine samples, respectively. Coronavirus RNA was detected in 55 of 248 (22%) of bat faecal samples; filovirus RNA was not detected in any of the bat samples. Further, coronavirus RNA was detected in 12 of 270 (4.4%) of rat faecal samples; all samples tested negative for paramyxovirus. Phylogenetic analysis revealed that the bat paramyxoviruses and bat and rat coronaviruses were related to viruses circulating in bat and rodent populations globally, but showed no cross-species mixing of viruses between bat and rat populations within Viet Nam. Our study shows that potentially novel variants of paramyxoviruses and coronaviruses commonly circulate in bat and rat populations in Viet Nam. Further characterization of the viruses and additional human and animal surveillance is required to evaluate the likelihood of viral spillover and to assess whether these viruses pose a risk to human health

    The Virome of Acute Respiratory Diseases in Individuals at Risk of Zoonotic Infections

    Get PDF
    The ongoing coronavirus disease 2019 (COVID-19) pandemic emphasizes the need to actively study the virome of unexplained respiratory diseases. We performed viral metagenomic next-generation sequencing (mNGS) analysis of 91 nasal-throat swabs from individuals working with animals and with acute respiratory diseases. Fifteen virus RT-PCR-positive samples were included as controls, while the other 76 samples were RT-PCR negative for a wide panel of respiratory pathogens. Eukaryotic viruses detected by mNGS were then screened by PCR (using primers based on mNGS-derived contigs) in all samples to compare viral detection by mNGS versus PCR and assess the utility of mNGS in routine diagnostics. mNGS identified expected human rhinoviruses, enteroviruses, influenza A virus, coronavirus OC43, and respiratory syncytial virus (RSV) A in 13 of 15 (86.7%) positive control samples. Additionally, rotavirus, torque teno virus, human papillomavirus, human betaherpesvirus 7, cyclovirus, vientovirus, gemycircularvirus, and statovirus were identified through mNGS. Notably, complete genomes of novel cyclovirus, gemycircularvirus, and statovirus were genetically characterized. Using PCR screening, the novel cyclovirus was additionally detected in 5 and the novel gemycircularvirus in 12 of the remaining samples included for mNGS analysis. Our studies therefore provide pioneering data of the virome of acute-respiratory diseases from individuals at risk of zoonotic infections. The mNGS protocol/pipeline applied here is sensitive for the detection of a variety of viruses, including novel ones. More frequent detections of the novel viruses by PCR than by mNGS on the same samples suggests that PCR remains the most sensitive diagnostic test for viruses whose genomes are known. The detection of novel viruses expands our understanding of the respiratory virome of animal-exposed humans and warrant further studies.Peer reviewe
    corecore