3,839 research outputs found

    Time Machine at the LHC

    Full text link
    Recently, black hole and brane production at CERN's Large Hadron Collider (LHC) has been widely discussed. We suggest that there is a possibility to test causality at the LHC. We argue that if the scale of quantum gravity is of the order of few TeVs, proton-proton collisions at the LHC could lead to the formation of time machines (spacetime regions with closed timelike curves) which violate causality. One model for the time machine is a traversable wormhole. We argue that the traversable wormhole production cross section at the LHC is of the same order as the cross section for the black hole production. Traversable wormholes assume violation of the null energy condition (NEC) and an exotic matter similar to the dark energy is required. Decay of the wormholes/time machines and signatures of time machine events at the LHC are discussed.Comment: 12 pages, LATEX, comments and references adde

    van Vleck determinants: traversable wormhole spacetimes

    Full text link
    Calculating the van Vleck determinant in traversable wormhole spacetimes is an important ingredient in understanding the physical basis behind Hawking's chronology protection conjecture. This paper presents extensive computations of this object --- at least in the short--throat flat--space approximation. An important technical trick is to use an extension of the usual junction condition formalism to probe the full Riemann tensor associated with a thin shell of matter. Implications with regard to Hawking's chronology protection conjecture are discussed. Indeed, any attempt to transform a single isolated wormhole into a time machine results in large vacuum polarization effects sufficient to disrupt the internal structure of the wormhole before the onset of Planck scale physics, and before the onset of time travel. On the other hand, it is possible to set up a putative time machine built out of two or more wormholes, each of which taken in isolation is not itself a time machine. Such ``Roman configurations'' are much more subtle to analyse. For some particularly bizarre configurations (not traversable by humans) the vacuum polarization effects can be arranged to be arbitrarily small at the onset of Planck scale physics. This indicates that the disruption scale has been pushed down into the Planck slop. Ultimately, for these configurations, questions regarding the truth or falsity of Hawking's chronology protection can only be addressed by entering the uncharted wastelands of full fledged quantum gravity.Comment: 42 pages, ReV_TeX 3.

    The Cosmological Constant as an Eigenvalue of a Sturm-Liouville Problem and its Renormalization

    Full text link
    We discuss the case of massive gravitons and their relation with the cosmological constant, considered as an eigenvalue of a Sturm-Liouville problem. A variational approach with Gaussian trial wave functionals is used as a method to study such a problem. We approximate the equation to one loop in a Schwarzschild background and a zeta function regularization is involved to handle with divergences. The regularization is closely related to the subtraction procedure appearing in the computation of Casimir energy in a curved background. A renormalization procedure is introduced to remove the infinities together with a renormalization group equation.Comment: 8 pages, Talk given at "QFEXT'05", the 7-th workshop on quantum field theory under the influence of external conditions, Barcelona, Spain, Sept. 5-9, 200

    An Alternative to Compactification

    Get PDF
    Conventional wisdom states that Newton's force law implies only four non-compact dimensions. We demonstrate that this is not necessarily true in the presence of a non-factorizable background geometry. The specific example we study is a single 3-brane embedded in five dimensions. We show that even without a gap in the Kaluza-Klein spectrum, four-dimensional Newtonian and general relativistic gravity is reproduced to more than adequate precision.Comment: LaTex, 9 page

    Hidden Markov Models of Evidence Accumulation in Speeded Decision Tasks

    Get PDF
    Speeded decision tasks are usually modeled within the evidence accumulation framework, enabling inferences on latent cognitive parameters, and capturing dependencies between the observed response times and accuracy. An example is the speed-accuracy trade-off, where people sacrifice speed for accuracy (or vice versa). Different views on this phenomenon lead to the idea that participants may not be able to control this trade-off on a continuum, but rather switch between distinct states (Dutilh, et al., 2010).Hidden Markov models are used to account for switching between distinct states. However, combining evidence accumulation models with a hidden Markov structure is a challenging problem, as evidence accumulation models typically come with identification and computational issues that make them challenging on their own. Thus, hidden Markov models have not used the evidence accumulation framework, giving up on the inference on the latent cognitive parameters, or capturing potential dependencies between response times and accuracy within the states.This article presents a model that uses an evidence accumulation model as part of a hidden Markov structure. This model is considered as a proof of principle that evidence accumulation models can be combined with Markov switching models. As such, the article considers a very simple case of a simplified Linear Ballistic Accumulation. An extensive simulation study was conducted to validate the model's implementation according to principles of robust Bayesian workflow. Example reanalysis of data from Dutilh, et al. (2010) demonstrates the application of the new model. The article concludes with limitations and future extensions or alternatives to the model and its application

    From wormhole to time machine: Comments on Hawking's Chronology Protection Conjecture

    Get PDF
    The recent interest in ``time machines'' has been largely fueled by the apparent ease with which such systems may be formed in general relativity, given relatively benign initial conditions such as the existence of traversable wormholes or of infinite cosmic strings. This rather disturbing state of affairs has led Hawking to formulate his Chronology Protection Conjecture, whereby the formation of ``time machines'' is forbidden. This paper will use several simple examples to argue that the universe appears to exhibit a ``defense in depth'' strategy in this regard. For appropriate parameter regimes Casimir effects, wormhole disruption effects, and gravitational back reaction effects all contribute to the fight against time travel. Particular attention is paid to the role of the quantum gravity cutoff. For the class of model problems considered it is shown that the gravitational back reaction becomes large before the Planck scale quantum gravity cutoff is reached, thus supporting Hawking's conjecture.Comment: 43 pages,ReV_TeX,major revision

    Gravastars must have anisotropic pressures

    Full text link
    One of the very small number of serious alternatives to the usual concept of an astrophysical black hole is the "gravastar" model developed by Mazur and Mottola; and a related phase-transition model due to Laughlin et al. We consider a generalized class of similar models that exhibit continuous pressure -- without the presence of infinitesimally thin shells. By considering the usual TOV equation for static solutions with negative central pressure, we find that gravastars cannot be perfect fluids -- anisotropic pressures in the "crust" of a gravastar-like object are unavoidable. The anisotropic TOV equation can then be used to bound the pressure anisotropy. The transverse stresses that support a gravastar permit a higher compactness than is given by the Buchdahl--Bondi bound for perfect fluid stars. Finally we comment on the qualitative features of the equation of state that gravastar material must have if it is to do the desired job of preventing horizon formation.Comment: V1: 15 pages; 4 figures; uses iopart.cls; V2: 16 pages; added 3 references and brief discussio

    Homogeneous singularities inside collapsing wormholes

    Full text link
    We analyze analytically and numerically the origin of the singularity in the course of the collapse of a wormhole with the exotic scalar field Psi with negative energy density, and with this field Psi together with the ordered magnetic field H. We do this under the simplifying assumptions of the spherical symmetry and that in the vicinity of the singularity the solution of the Einstein equations depends only on one coordinate (the homogeneous approximation). In the framework of these assumptions we found the principal difference between the case of the collapse of the ordinary scalar field Phi with the positive energy density together with an ordered magnetic field H and the collapse of the exotic scalar field Psi together with the magnetic field H. The later case is important for the possible astrophysical manifestation of the wormholes.Comment: 10 pages, 5 figures each of which has a),b),c),and d) sub-figures. To be published in "Physical review. D, Particles, fields, gravitation, and cosmology

    On optical black holes in moving dielectrics

    Get PDF
    We study the optical paths of the light rays propagating inside a nonlinear moving dielectric media. For the rapidly moving dielectrics we show the existence of a distinguished surface which resembles, as far as the light propagation is concerned, the event horizon of a black hole. Our analysis clarifies the physical conditions under which electromagnetic analogues of the gravitational black holes can eventually be obtained in laboratory.Comment: 5 pages, 2 figures, revtex
    • …
    corecore