2,838 research outputs found

    A new purple sulfur bacterium from saline littoral sediments, Thiorhodotvibrio winogradskyi gen. nov. and sp. nov.

    Get PDF
    Two strains of a new purple sulfur bacterium were isolated in pure culture from the littoral sediment of a saline lake (Mahoney Lake, Canada) and a marine microbial mat from the North Sea island of Mellum, respectively. Single cells were vibrioid-to spirilloid-shaped and motile by means of single polar flagella. Intracellular photosynthetic membranes were of the vesicular type. As photosynthetic pigments, bacteriochlorophyll a and the carotenoids lycopene, rhodopin, anhydrorhodovibrin, rhodovibrin and spirilloxanthin were present. Hydrogen sulfide and elemental sulfur were used under anoxic conditions for phototrophic growth. In addition one strain (06511) used thiosulfate. Carbon dioxide, acetate and pyruvate were utilized by both strains as carbon sources. Depending on the strain propionate, succinate, fumarate, malate, tartrate, malonate, glycerol or peptone may additionally serve as carbon sources in the light. Optimum growth rates were obtained at pH 7.2, 33 °C, 50 mol m-2 s-1 intensity of daylight fluorescent tubes and a salinity of 2.2–3.2% NaCl. During growth on sulfide, up to ten small sulfur globules were formed inside the cells. The strains grew microaerophilic in the dark and exhibited high specific respiration rates. No vitamins were required for growth. The DNA base composition was 61.0–62.4 mol% G+C. The newly isolated bacterium belongs to the family chromatiaceae and is described as a member of a new genus and species, Thiorhodovibrio winogradskyi gen. nov. and sp. nov. with the type strain SSP1, DSM No. 6702

    Guided placement of zygomatic implants in head and neck cancer patients:implant survival and patient outcomes at 1-3 years of follow-up

    Get PDF
    Zygomatic implants (ZI) are a valuable option for supporting an obturator prosthesis after maxillary resection. This study was performed to assess the clinical outcomes of a digitally validated guided technique for ZI placement, followed by immediate prosthetic obturation. The primary objective was to evaluate implant survival, while the secondary objective was to assess patient-reported quality of life post-rehabilitation. Twelve patients treated for head and neck cancer received a total of 36 ZI after ablative surgery. The mean duration of ZI follow-up was 30.1 months. The survival rate of ZI placed in non-irradiated patients was 100%, while it was 85% in irradiated patients. Patient-reported outcomes were evaluated using the Liverpool Oral Rehabilitation Questionnaire (LORQv3) and the University of Washington Quality of Life Questionnaire (UW-QOL v4). Most patients reported satisfactory outcomes in the oral function domain of the LORQv3 (mean score 17.7 ± 4.5; possible range 12-48, with lower scores indicating better outcomes). Regarding the UW-QOL v4, the swallowing and chewing domains had the highest scores (mean 97.5 ± 8.7 and 95.8 ± 14.4, respectively; maximum possible score of 100). In conclusion, this treatment approach improves function and quality of life after maxillary ablative surgery. However, irradiated patients showed a noticeable trend of higher implant failure, and this was influenced by tumour position and size impacting the radiation dose to the zygomatic bone.</p

    Immediate implant-retained prosthetic obturation after maxillectomy based on zygomatic implant placement by 3D-guided surgery:a cadaver study

    Get PDF
    Abstract Background The aim of this study was to introduce a complete 3D workflow for immediate implant retained prosthetic rehabilitation following maxillectomy in cancer surgery. The workflow consists of a 3D virtual surgical planning for tumor resection, zygomatic implant placement, and for an implant-retained prosthetic-obturator to fit the planned outcome situation for immediate loading. Materials and methods In this study, 3D virtual surgical planning and resection of the maxilla, followed by guided placement of 10 zygomatic implants, using custom cutting and drill/placement-guides, was performed on 5 fresh frozen human cadavers. A preoperatively digitally designed and printed obturator prosthesis was placed and connected to the zygomatic implants. The accuracy of the implant positioning was obtained using 3D deviation analysis by merging the pre- and post-operative CT scan datasets. Results The preoperatively designed and manufactured obturator prostheses matched accurately the per-operative implant positions. All five obturators could be placed and fixated for immediate loading. The mean prosthetic point deviation on the cadavers was 1.03 ± 0.85 mm; the mean entry point deviation was 1.20 ± 0.62 mm; and the 3D angle deviation was 2.97 ± 1.44°. Conclusions It is possible to 3D plan and accurately execute the ablative surgery, placement of zygomatic implants, and immediate placement of an implant-retained obturator prosthesis with 3D virtual surgical planning.The next step is to apply the workflow in the operating room in patients planned for maxillectomy

    Differential effects of long-term aerobic versus cognitively-engaging physical activity on children's visuospatial working memory related brain activation:A cluster RCT

    Get PDF
    Different types of physical activity are thought to differentially affect children's brain activation, via physiological mechanisms, or by activating similar brain areas during physical and cognitive tasks. Despite many behavioral studies relying on these mechanisms, they have been rarely studied. This study looks at both mechanisms simultaneously, by examining effects of two physical activity interventions (aerobic vs. cognitively-engaging) on children's brain activation. Functional Magnetic Resonance Imaging (fMRI) data of 62 children (48.4% boys, mean age 9.2 years) was analyzed. Children's visuospatial working memory related brain activity patterns were tested using a Spatial Span Task before and after the 14-week interventions consisting of four physical education lessons per week. The control group followed their regular program of two lessons per week. Analyses of activation patterns in SPM 12.0 revealed no activation changes between pretest and posttest (p > .05), and no differences between the three conditions in pretest-posttest changes in brain activation (p > .05). Large inter-individual differences were found, suggesting that not every child benefited from the interventions in the same way. To get more insight into the assumed mechanisms, further research is needed to understand whether, when, for whom, and how physical activity results in changed brain activation patterns

    Relationships between gross motor skills, cardiovascular fitness, and visuospatial working memory-related brain activation in 8-to 10-year-old children

    Get PDF
    Relationships between gross motor skills and cardiovascular fitness with visuospatial working memory (VSWM) in children are hypothesized to be mediated by underlying functional brain mechanisms. Because there is little experimental evidence to support this mechanism, the present study was designed to investigate the relationships of gross motor skills and cardiovascular fitness with VSWM-related brain activation in 8- to 10-year-old children. Functional magnetic resonance imaging data obtained during a VSWM-task were analyzed for 80 children from grades 3 (47.5%) and 4 of 21 primary schools in the Netherlands (51.3% girls). Gross motor skills (Korper Koordinationstest für Kinder and Bruininks-Oseretsky Test of Motor Proficiency - 2nd Edition) and cardiovascular fitness (20-meter Shuttle Run Test) were assessed. VSWM-related brain activation was found in a network involving the angular gyrus, the superior parietal cortex, and the thalamus; deactivation was found in the inferior and middle temporal gyri. Although behavioral results showed significant relations of gross motor skills and cardiovascular fitness with VSWM performance, gross motor skills and cardiovascular fitness were not related to VSWM-related brain activation. Therefore, we could not confirm the hypothesis that brain activation underlies the relationship of gross motor skills and cardiovascular fitness with VSWM performance. Our results suggest that either the effects of physical activity on cognition do not necessarily go via changes in gross motor skills and/or cardiovascular fitness, or that brain activation patterns as measured with the blood-oxygen-level dependent (BOLD) signal may not be the mechanism underlying the relationships of gross motor skills and cardiovascular fitness with VSWM

    Phase separation and enhanced charge-spin coupling near magnetic transitions

    Full text link
    The generic changes of the electronic compressibility in systems which show magnetic instabilities is studied. It is shown that, when going into the ordered phase, the compressibility is reduced by an amount comparable to the its original value, making charge instabilities also possible. We discuss, within this framework, the tendency towards phase separation of the double exchange systems, the pyrochlores, and other magnetic materials

    Integrating personality research and animal contest theory: aggressiveness in the green swordtail <i>Xiphophorus helleri</i>

    Get PDF
    &lt;p&gt;Aggression occurs when individuals compete over limiting resources. While theoretical studies have long placed a strong emphasis on context-specificity of aggression, there is increasing recognition that consistent behavioural differences exist among individuals, and that aggressiveness may be an important component of individual personality. Though empirical studies tend to focus on one aspect or the other, we suggest there is merit in modelling both within-and among-individual variation in agonistic behaviour simultaneously. Here, we demonstrate how this can be achieved using multivariate linear mixed effect models. Using data from repeated mirror trials and dyadic interactions of male green swordtails, &lt;i&gt;Xiphophorus helleri&lt;/i&gt;, we show repeatable components of (co)variation in a suite of agonistic behaviour that is broadly consistent with a major axis of variation in aggressiveness. We also show that observed focal behaviour is dependent on opponent effects, which can themselves be repeatable but were more generally found to be context specific. In particular, our models show that within-individual variation in agonistic behaviour is explained, at least in part, by the relative size of a live opponent as predicted by contest theory. Finally, we suggest several additional applications of the multivariate models demonstrated here. These include testing the recently queried functional equivalence of alternative experimental approaches, (e. g., mirror trials, dyadic interaction tests) for assaying individual aggressiveness.&lt;/p&gt

    Solitary waves in the Nonlinear Dirac Equation

    Get PDF
    In the present work, we consider the existence, stability, and dynamics of solitary waves in the nonlinear Dirac equation. We start by introducing the Soler model of self-interacting spinors, and discuss its localized waveforms in one, two, and three spatial dimensions and the equations they satisfy. We present the associated explicit solutions in one dimension and numerically obtain their analogues in higher dimensions. The stability is subsequently discussed from a theoretical perspective and then complemented with numerical computations. Finally, the dynamics of the solutions is explored and compared to its non-relativistic analogue, which is the nonlinear Schr{\"o}dinger equation. A few special topics are also explored, including the discrete variant of the nonlinear Dirac equation and its solitary wave properties, as well as the PT-symmetric variant of the model
    • …
    corecore