26 research outputs found

    Social threat exposure in juvenile mice promotes cocaine-seeking by altering blood clotting and brain vasculature

    Get PDF
    Childhood maltreatment is associated with increased severity of substance use disorder and frequent relapse to drug use following abstinence. However, the molecular and neurobiological substrates that are engaged during early traumatic events and mediate the greater risk of relapse are poorly understood and knowledge of risk factors is to date extremely limited. In this study, we modeled childhood maltreatment by exposing juvenile mice to a threatening social experience (social stressed, S-S). We showed that S-S experience influenced the propensity to reinstate cocaineseeking after periods of withdrawal in adulthood. By exploring global gene expression in blood leukocytes we found that this behavioral phenotype was associated with greater blood coagulation. In parallel, impairments in brain microvasculature were observed in S-S mice. Furthermore, treatment with an anticoagulant agent during withdrawal abolished the susceptibility to reinstate cocaine-seeking in S-S mice. These findings provide novel insights into a possible molecular mechanism by which childhood maltreatment heightens the risk for relapse in cocaine-dependent individuals

    Analysis of HIV quasispecies and virological outcome of an HIV D+/R+ kidney-liver transplantation

    Get PDF
    Introduction Transplantation among HIV positive patients may be a valuable therapeutic intervention. This study involves an HIV D+/R+ kidney-liver transplantation, where PBMC-associated HIV quasispecies were analyzed in donor and transplant recipients (TR) prior to transplantation and thereafter, together with standard viral monitoring. Methods The donor was a 54 year of age HIV infected woman: kidney and liver recipients were two HIV infected men, aged 49 and 61. HIV quasispecies in PBMC was analyzed by ultra-deep sequencing of V3 env region. During TR follow-up, plasma HIV-1 RNA, HIV-1 DNA in PBMC, analysis of proviral integration sites and drug-resistance genotyping were performed. Other virological and immunological monitoring included CMV and EBV DNA quantification in blood and CD4 T cell counts. Results Donor and TR were all ART-HIV suppressed at transplantation. Thereafter, TR maintained a nearly suppressed HIV-1 viremia, but HIV-1 RNA blips and the increase of proviral integration sites in PBMC attested some residual HIV replication. A transient peak in HIV-1 DNA occurred in the liver recipient. No major changes of drug-resistance genotype were detected after transplantation. CMV and EBV transient reactivations were observed only in the kidney recipient, but did not require specific treatment. CD4 counts remained stable. No intermixed quasispecies between donor and TR was observed at transplantation or thereafter. Despite signs of viral evolution in TR, HIV genetic heterogeneity did not increase over the course of the months of follow up. Conclusions No evidence of HIV superinfection was observed in the donor nor in the recipients. The immunosuppressive treatment administrated to TR did not result in clinical relevant viral reactivations

    Quantitative analysis of motor behavior and neural activity associated to joint-action during social cooperation in frontal and parietal cortex of macaque monkeys

    No full text
    The neural mechanisms related to the ability of humans and non-human primates to interact through joint-action are still poorly investigated. In the domain of motor functions, the study of goal-directed movement showed that no obligatory relationship exists between neural activity and movement, but rather movement-related activity is context-dependent and linked to different cognitive states. So far, neural activity in different cortical areas has been studied in a single brain in action, thus missing all information typical of interacting brains through a joint action task. To study both behavioral parameters and potential neural codes for joint action, two macaque monkeys were trained to perform a cooperative joint action task. Monkeys were required to perform individual or cooperative actions, exerting a force on an isometric joystick. Extracellular single-unit activity (SUA) was recorded from dorsal premotor cortex (PMd) and inferior parietal lobule (IPL), simultaneously from homologous areas of both monkeys by using two multiple-electrode arrays. We showed that in monkeys does not exist a single motor strategy to execute cooperative action. High variability of all the considered parameters has been observed across directions of movement, monkeys and conditions, indicating that different strategies are used by the partners to accomplish a common goal, depending on types of movement to be executed. However, specific temporal and spatial parameters (RTs, peak velocity and inter-cursor distance) indicate that monkeys during the cooperative condition adapt their own behavior to the other’s action in order to successfully achieve their common goal. Furthermore, through the study of Granger method we observed causality relations between cursors’ trajectories during cooperative actions. Regarding the analysis of neural activity, we endorsed the hypothesis that frontal and parietal regions contribute to the coding of motor behavior specifically during the execution of a joint action task. These findings provide a quantitative descriptions of motor behavior of two cooperating monkeys and represent a first step toward the description of the neural operations underlying motor functions in a cooperative context and suggest that within this action cooperation network different areas encode joint-action

    Timing and communication of parietal cortex for visuomotor control

    No full text
    In both monkeys and humans, motor cognition emerges from a parietal-frontal network containing discrete dominant domains of visual, eye and hand signals, where neurons are responsible for goal and effector selection. Within these domains, the combination of different inputs shape the tuning properties of neurons, while local and long cortico-cortical connections outline the architecture of the distributed network and determine the conduction time underlying eye-hand coordination, necessary for visually guided operations in the action space. The analysis of the communication timing between parietal and frontal nodes of the network helps understanding the sensorimotor cortical delays associated to different functions, such as online control of movement and eye-hand coordination, and opens a new perspective to the study of the parieto-frontal interactions

    Development of motor coordination during joint action in mid-childhood

    No full text
    The ability to act jointly with others is a hallmark of primate evolution and is fundamental for human development. In recent years, the study of coordination strategies between individuals performing joint actions has received growing attention. However, when, in the course of post-natal development, this cognitive-motor function emerges is still unknown. Here, we studied dyads of peers aged 6-9 years, as well as adult subjects, while they performed a task where the same action, namely, exerting hand force on an isometric joystick to move a visual cursor from a central toward a peripheral target, was performed in a "solo" and in a social "cooperative" context. The results revealed that during joint action planning, an attempt to synchronize one's own action with that of a partner emerges at 7 years of age, together with a reduction in the duration and variability of the reaction times. A critical time is 8 years, when "solo" performance reaches a high level of accuracy. From this age, another coordination strategy, based on the online monitoring of the peer's behavior, seems to be implemented during the execution of joint action. The motor and cognitive development occurring during childhood are discussed as possible mechanisms mediating, respectively, the capability and the propensity to take into account the peer's behavior for implementing a common action plan

    Posterior parietal cortex encoding of dynamic hand force underlying hand–object interaction

    No full text
    Major achievements of primate evolution are skilled hand-object interaction and tool use, both in part dependent on parietal cortex expansion. We recorded spiking activity from macaque inferior parietal cortex during directional manipulation of an isometric tool, which required the application of hand forces to control a cursor's motion on a screen. In areas PFG/PF, the activity of ∼70% neurons was modulated by the hand force necessary to implement the desired target motion, reflecting an inverse model, rather than by the intended motion of the visual cursor (forward model). The population vector matched the direction and amplitude of the instantaneous force increments over time. When exposed to a new force condition, that obliged the monkey to change the force output to successfully bring the cursor to the final target, the activity of a consistent subpopulation of neurons changed in an orderly fashion and, at the end of a "Wash-out" session, retained memory of the new learned association, at the service of predictive control of force. Our findings suggest that areas PFG/PF represent a crucial node of the distributed control of hand force, by encoding instantaneous force variations and serving as a memory reservoir of hand dynamics required for object manipulation and tool use. This is coherent with previous studies in humans showing the following: (1) impaired adaptation to a new force field under TMS parietal perturbation; (2) defective control of direction of hand force after parietal lesion; and (3) fMRI activation of parietal cortex during object manipulation requiring control of fine hand forces

    Computational Architecture of the Parieto-Frontal Network Underlying Cognitive-Motor Control in Monkeys

    No full text
    The statistical structure of intrinsic parietal and parieto-frontal connectivity in monkeys was studied through hierarchical cluster analysis. Based on their inputs, parietal and frontal areas were grouped into different clusters, including a variable number of areas that in most instances occupied contiguous architectonic fields. Connectivity tended to be stronger locally: that is, within areas of the same cluster. Distant frontal and parietal areas were targeted through connections that in most instances were reciprocal and often of different strength. These connections linked parietal and frontal clusters formed by areas sharing basic functional properties. This led to five different medio-laterally oriented pillar domains spanning the entire extent of the parieto-frontal system, in the posterior parietal, anterior parietal, cingulate, frontal, and prefrontal cortex. Different information processing streams could be identified thanks to inter-domain connectivity. These streams encode fast hand reaching and its control, complex visuomotor action spaces, hand grasping, action/intention recognition, oculomotor intention and visual attention, behavioral goals and strategies, and reward and decision value outcome. Most of these streams converge on the cingulate domain, the main hub of the system. All of them are embedded within a larger eye-hand coordination network, from which they can be selectively set in motion by task demands

    Impairment of Online Control of Hand and Eye Movements in a Monkey Model of Optic Ataxia

    No full text
    The parietal mechanisms for online control of hand trajectory were studied by combining single-cell recording and reversible inactivation of superior parietal area 5 (PE/PEc; SPL) of monkeys while these made reaches and saccades to visual targets, when the target position changed unexpectedly. Neural activity was modulated by hand position, speed, and movement direction, and by pre- and/or postsaccadic signals. After bilateral muscimol injection, an increase in the hand reaction- and movement-time toward both the first and second targets was observed. This caused an increase in the time necessary for the trajectory correction, and therefore an elongation of the hand-path toward the first target location. Furthermore, hand trajectories were different in shape than control ones. An elongation of the eye reaction time to both first and second targets was also observed, which could partially explain the deficit of planning and correction of hand movement. These results identify the superior parietal lobule as a crucial node in the online control of hand and eye movement and highlight the role of the eye impairment in the emergence of the reaching disorder so far regarded as the hallmark of optic ataxia
    corecore