679 research outputs found
The Jabal Akhdar Dome in the Oman Mountains : evolution of a dynamic fracture system
Acknowledgments: This study was carried out within the framework of DGMK (German Society for Petroleum and Coal Science and Technology) research project 718 âMineral Vein Dynamics Modelling,â which is funded by the companies ExxonMobil Production Deutschland GmbH, GDF SUEZ E&P Deutschland GmbH, RWE Dea AG and Wintershall Holding GmbH, within the basic research program of the WEG Wirtschaftsverband Erdošl- und Erdgasgewinnung e.V. We thank the companies for their financial support and their permission to publish these results. The German University of Technology in Oman (GU-Tech) is acknowledged for its logistic support. We gratefully acknowledge the reviewers Andrea Billi and Jean-Paul Breton, whose constructive reviews greatly improved the manuscriptPeer reviewedPreprin
Benefits of joint LIGO -- Virgo coincidence searches for burst and inspiral signals
We examine the benefits of performing a joint LIGO--Virgo search for
transient signals. We do this by adding burst and inspiral signals to 24 hours
of simulated detector data. We find significant advantages to performing a
joint coincidence analysis, above either a LIGO only or Virgo only search.
These include an increased detection efficiency, at a fixed false alarm rate,
to both burst and inspiral events and an ability to reconstruct the sky
location of a signal.Comment: 11 pages 8 figures, Amaldi 6 proceeding
Search for gravitational waves associated with gamma-ray bursts during the first Advanced LIGO observing run and implications for the origin of GRB 150906B
We present the results of the search for gravitational waves (GWs) associated with Îł-ray bursts detected during the first observing run of the Advanced Laser Interferometer Gravitational-Wave Observatory (LIGO). We find no evidence of a GW signal for any of the 41 Îł-ray bursts for which LIGO data are available with sufficient duration. For all Îł-ray bursts, we place lower bounds on the distance to the source using the optimistic assumption that GWs with an energy of 10^(-2)M_âc^2 were emitted within the 16â500 Hz band, and we find a median 90% confidence limit of 71 Mpc at 150 Hz. For the subset of 19 short/hard Îł-ray bursts, we place lower bounds on distance with a median 90% confidence limit of 90 Mpc for binary neutron star (BNS) coalescences, and 150 and 139 Mpc for neutron starâblack hole coalescences with spins aligned to the orbital angular momentum and in a generic configuration, respectively. These are the highest distance limits ever achieved by GW searches. We also discuss in detail the results of the search for GWs associated with GRB 150906B, an event that was localized by the InterPlanetary Network near the local galaxy NGC 3313, which is at a luminosity distance of 54 Mpc (z = 0.0124). Assuming the Îł-ray emission is beamed with a jet half-opening angle â©œ30°, we exclude a BNS and a neutron starâblack hole in NGC 3313 as the progenitor of this event with confidence >99%. Further, we exclude such progenitors up to a distance of 102 Mpc and 170 Mpc, respectively
All-sky search for long-duration gravitational wave transients with initial LIGO
We present the results of a search for long-duration gravitational wave transients in two sets of data collected by the LIGO Hanford and LIGO Livingston detectors between November 5, 2005 and September 30, 2007, and July 7, 2009 and October 20, 2010, with a total observational time of 283.0 days and 132.9 days, respectively. The search targets gravitational wave transients of duration 10â500 s in a frequency band of 40â1000 Hz, with minimal assumptions about the signal waveform, polarization, source direction, or time of occurrence. All candidate triggers were consistent with the expected background; as a result we set 90% confidence upper limits on the rate of long-duration gravitational wave transients for different types of gravitational wave signals. For signals from black hole accretion disk instabilities, we set upper limits on the source rate density between 3.4 Ă 10â5 and 9.4 Ă 10â4 Mpcâ3 yrâ1 at 90% confidence. These are the first results from an all-sky search for unmodeled long-duration transient gravitational waves
Characterization of transient noise in Advanced LIGO relevant to gravitational wave signal GW150914
On 14 September 2015, a gravitational wave signal from a coalescing black hole binary system was observed by the Advanced LIGO detectors. This paper describes the transient noise backgrounds used to determine the significance of the event (designated GW150914) and presents the results of investigations into potential correlated or uncorrelated sources of transient noise in the detectors around the time of the event. The detectors were operating nominally at the time of GW150914. We have ruled out environmental influences and non-Gaussian instrument noise at either LIGO detector as the cause of the observed gravitational wave signal
Observing gravitational-wave transient GW150914 with minimal assumptions
The gravitational-wave signal GW150914 was first identified on September 14, 2015, by searches for
short-duration gravitational-wave transients. These searches identify time-correlated transients in multiple
detectors with minimal assumptions about the signal morphology, allowing them to be sensitive to
gravitational waves emitted by a wide range of sources including binary black hole mergers. Over the
observational period from September 12 to October 20, 2015, these transient searches were sensitive to
binary black hole mergers similar to GW150914 to an average distance of âŒ600 Mpc. In this paper, we
describe the analyses that first detected GW150914 as well as the parameter estimation and waveform
reconstruction techniques that initially identified GW150914 as the merger of two black holes. We find that
the reconstructed waveform is consistent with the signal from a binary black hole merger with a chirp mass
of âŒ30 Mâ and a total mass before merger of âŒ70 Mâ in the detector frame
The basic physics of the binary black hole merger GW150914
The first direct gravitational-wave detection was made by the Advanced Laser Interferometer Gravitational Wave Observatory on September 14, 2015. The GW150914 signal was strong enough to be apparent, without using any waveform model, in the filtered detector strain data. Here, features of the signal visible in the data are analyzed using concepts from Newtonian physics and general relativity, accessible to anyone with a general physics background. The simple analysis presented here is consistent with the fully general-relativistic analyses published elsewhere, in showing that the signal was produced by the inspiral and subsequent merger of two black holes. The black holes were each of approximately 35 MÊ, still orbited each other as close as âŒ350 km apart and subsequently merged to form a single black hole. Similar reasoning, directly from the data, is used to roughly estimate how far these black holes were from the Earth, and the energy that they radiated in gravitational waves
Supplement : "The rate of binary black hole mergers inferred from advanced LIGO observations surrounding GW150914" (2016, ApJL, 833, L1)
This article provides supplemental information for a Letter reporting the rate of (BBH) coalescences inferred from 16 days of coincident Advanced LIGO observations surrounding the transient (GW) signal GW150914. In that work we reported various rate estimates whose 90% confidence intervals fell in the range 2-600 Gpc-3yr-1. Here we give details on our method and computations, including information about our search pipelines, a derivation of our likelihood function for the analysis, a description of the astrophysical search trigger distribution expected from merging BBHs, details on our computational methods, a description of the effects and our model for calibration uncertainty, and an analytic method for estimating our detector sensitivity, which is calibrated to our measurements
A guide to LIGO-Virgo detector noise and extraction of transient gravitational-wave signals
The LIGO Scientific Collaboration and the Virgo Collaboration have cataloged eleven confidently detected gravitational-wave events during the first two observing runs of the advanced detector era. All eleven events were consistent with being from well-modeled mergers between compact stellar-mass objects: black holes or neutron stars. The data around the time of each of these events have been made publicly available through the gravitational-wave open science center. The entirety of the gravitational-wave strain data from the first and second observing runs have also now been made publicly available. There is considerable interest among the broad scientific community in understanding the data and methods used in the analyses. In this paper, we provide an overview of the detector noise properties and the data analysis techniques used to detect gravitational-wave signals and infer the source properties. We describe some of the checks that are performed to validate the analyses and results from the observations of gravitational-wave events. We also address concerns that have been raised about various properties of LIGO-Virgo detector noise and the correctness of our analyses as applied to the resulting data
Gravitational-wave constraints on the equatorial ellipticity of millisecond pulsars
We present a search for continuous gravitational waves from five radio pulsars, comprising three recycled pulsars (PSR J0437â4715, PSR J0711â6830, and PSR J0737â3039A) and two young pulsars: the Crab pulsar (J0534+2200) and the Vela pulsar (J0835â4510). We use data from the third observing run of Advanced LIGO and Virgo combined with data from their first and second observing runs. For the first time, we are able to match (for PSR J0437â4715) or surpass (for PSR J0711â6830) the indirect limits on gravitational-wave emission from recycled pulsars inferred from their observed spin-downs, and constrain their equatorial ellipticities to be less than 10â8. For each of the five pulsars, we perform targeted searches that assume a tight coupling between the gravitational-wave and electromagnetic signal phase evolution. We also present constraints on PSR J0711â6830, the Crab pulsar, and the Vela pulsar from a search that relaxes this assumption, allowing the gravitational-wave signal to vary from the electromagnetic expectation within a narrow band of frequencies and frequency derivatives
- âŠ