116 research outputs found

    Hydrostatic compression on polypropylene foam

    Get PDF
    Models currently used to simulate the impact behaviour of polymeric foam at high strain rates use data from mechanical tests. Uniaxial compression is the most common mechanical test used, but the results from this test alone are insufficient to characterise the foam response to three-dimensional stress states. A new experimental apparatus for the study of the foam behaviour under a state of hydrostatic stress is presented. A flywheel was modified to carry out compression tests at high strain rates, and a hydrostatic chamber designed to obtain the variation of stress with volumetric strain, as a function of density and deformation rate. High speed images of the sample deformation under pressure were analysed by image processing. Hydrostatic compression tests were carried out, on polypropylene foams, both quasi statically and at high strain rates. The stress–volumetric strain response of the foam was determined for samples of foam of density from 35 to 120 kg/m3, loaded at two strain rates. The foam response under hydrostatic compression shows a non-linear elastic stage, followed by a plastic plateau and densification. These were characterised by a compressibility modulus (the slope of the initial stage), a yield stress and a tangent modulus. The foam was transversely isotropic under hydrostatic compression

    Microcellular Foaming of Polymethylmethacrylate in a Batch Supercritical CO2 Process: Effect of Microstructure on Compression Behavior

    Get PDF
    Microcellular foaming of reinforced core/ shell Polymethylmethacrylate (PMMA) was carried out bymeans of supercritical CO2 in a single-step process. Samples were produced using a technique based on the saturation of the polymer under high pressure of CO2(300 bars,40 C), and cellular structure was controlled by varying the depressurization rate from 0.5 bar/s to 1.6 x10-2 bar/sleading to cell sizes from 1lm to 200l m, and densities from 0.8 to 1.0 g/cm3. It was found that the key parameter to control cell size was depressurization rate, and larger depressurization rates generated bigger cell sizes. On the other hand, variation of the density of the samples was not so considerable. Low rate compression tests were carried out, analyzing the dependence of mechanical parameters such as elastic modulus, yield stress and densification strain with cell size. Moreover, the calculation of the energy absorbed for each sample is presented, showing an optimum of energy absorption up to 50% of deformation in the micrometer cellular range (here at a cell size of about 5 ”m). To conclude, a brief comparison between neat PMMA and the core/shell reinforced PMMA has been carried out, analyzing the effect of the core/shell particles in the foaming behavior and mechanical properties

    Scale effects on the response of composite structures under impact loading

    Get PDF
    For several years, composite materials have taken a significant part in the realization of structures designed for transport (aeronautical, nautical, automotive. . .). In order to qualify the behavior of such structures, preliminary validation tests have to be done. These specific tests are often very expensive and difficult to set up, especially when the structure dimensions are large (fuselages of aircraft, ship hulls. . .). An alternative way is then to employ small-scale models. The use of these reduced scale structures requires the identification of similitude models allowing the extrapolation of the small-scale model behavior to the real structure. Although largely developed in the case of homogeneous materials, such similitude techniques are not clearly identified for composite materials taking into account the damage evolution during an impact. The purpose of this article is firstly to present existing similitude techniques making it possible to predict the composite structure behaviour from the knowledge of small-scale model response. Secondly, experiments were done on two scale of samples carried out by stratification of unidirectional carbon/epoxy plies. These results were finally compared with the analytical predictions of similitude laws currently used. The aim of this paper is to contribute to similitude laws development applied to composite structures. These laws permit to extrapolate the small-scale model behavior to the real scale one. Existing approaches have been established following two different methods. They are summarized in this paper and applied to impact loadings on two laminated plate scales. In order to complete data collected by ‘‘conventional’’ instrumentation (force transducer, displacement sensor, accelerometer.. .), optical device such as an high-velocity CCD camera, associated with optical techniques for the monitoring of markers, were used. These techniques make possible to compare displacement lines corresponding to each scale. It is shown that existing similitude laws, used for elastic materials, do not allow to simulate the behavior of the real scale when this one is damaged

    Impact on multi-layered polypropylene foams

    Get PDF
    Foams, and particularly the polypropylene foam, are more and more often used in the area of injury protection and passive safety for its energy absorption capacity. This multi-scale material is constituted of mesoscopic beads with a large variability of the material properties. To study the effects of these mesoscopic heterogeneities on both the macroscopic and the local behaviors, numerical simulations on virtual volumes of foam under dynamic loading have been performed. The influence of the organized system of heterogeneities has also been studied in the cases of a random distribution and a multi-layered volume. Experimental dynamic compressive tests have been performed on multi-layered volumes of foam and compared with the results of the Finite Element Method

    MĂ©thode des Ă©lĂ©ments discrets : des problĂšmes multi-corps aux problĂšmes d’endommagement dynamique complexes.

    Get PDF
    La mĂ©thode des Ă©lĂ©ments discrets est prĂ©sentĂ©e comme une alternative aux approches de type mĂ©canique des milieux continus pour aborder certains aspects liĂ©s aux problĂšmes dynamiques, notamment la multi fracturation de matĂ©riaux fragiles. Des exemples liĂ©s Ă  l’usinage des composites et au surfaçage du verre sont prĂ©sentĂ©s. Une extension de la mĂ©thode pour Ă©tudier le comportement des mousses est ensuite proposĂ©e et imagĂ©e par des premiers rĂ©sultats

    A thick cellular structural adhesive: Identification of its behavior under shear loading

    Get PDF
    This study focuses on the link between the microstructure and the mechanical behavior under shear loading of a thick cellular structural adhesive (TCSA). X-ray microtomography and image post-processing were first used to perform 3D-quantitative microstructure analysis. The cells morphometric parameters and their orientations were studied. The foaming process boundary conditions seems to create local density gradients changing the cells dimensions and shape. The cells are more spherical in the core of the material whereas being more ellipsoidal close to the upper and lower faces of the samples creating a skin layer. The effect on the strain field of this skin layer has then been highlighted. Secondly, a shear test method using an Arcan setup coupled with digital image correlation was used and allowed to observe the mechanical behavior of the material under shear loadings. Instead of the material being cellular and heterogenous, it has been found that the strain field can be considered homogeneous at macroscopic scale to extract the properties on a homogeneous equivalent material. Shear test on samples with different densities were performed. Using the relation developed by Gibson and Ashby linking the shear modulus to the density squared is a first approximation, at this scale, to predict and describe the mechanical behavior under shear loading

    Scale effects on the response of composite structures under impact loading

    Get PDF
    For several years, composite materials have taken a significant part in the realization of structures designed for transport (aeronautical, nautical, automotive. . .). In order to qualify the behavior of such structures, preliminary validation tests have to be done. These specific tests are often very expensive and difficult to set up, especially when the structure dimensions are large (fuselages of aircraft, ship hulls. . .). An alternative way is then to employ small-scale models. The use of these reduced scale structures requires the identification of similitude models allowing the extrapolation of the small-scale model behavior to the real structure. Although largely developed in the case of homogeneous materials, such similitude techniques are not clearly identified for composite materials taking into account the damage evolution during an impact. The purpose of this article is firstly to present existing similitude techniques making it possible to predict the composite structure behaviour from the knowledge of small-scale model response. Secondly, experiments were done on two scale of samples carried out by stratification of unidirectional carbon/epoxy plies. These results were finally compared with the analytical predictions of similitude laws currently used. The aim of this paper is to contribute to similitude laws development applied to composite structures. These laws permit to extrapolate the small-scale model behavior to the real scale one. Existing approaches have been established following two different methods. They are summarized in this paper and applied to impact loadings on two laminated plate scales. In order to complete data collected by ‘‘conventional’’ instrumentation (force transducer, displacement sensor, accelerometer.. .), optical device such as an high-velocity CCD camera, associated with optical techniques for the monitoring of markers, were used. These techniques make possible to compare displacement lines corresponding to each scale. It is shown that existing similitude laws, used for elastic materials, do not allow to simulate the behavior of the real scale when this one is damaged

    Influence de la vitesse de sollicitation sur le comportement en compression d'un liÚge aggloméré renforcé

    Get PDF
    International audienceThe demand for bio-sourced materials is currently increasing. Cork material because of its unique properties (fire resistant, energy absorbing, ...) is then an excellent candidate for a large set of applications. In order to widen its possible uses, cork agglomerates with reinforcements at a 0.48 density were studied to compare their mechanical performances with classical cork agglomerates. This paper investigates the effect of these foreign reinforcements on the properties of agglomerated cork under a compressive loading. The material behavior has been determined as a function of the average strain rate and the direction of solicitation. The microstructure was first observed through optical and scanning electronic microscopy, spotting charges between each cork bead. The characterisation of cork at different strain rates was then carried out. An electromechanical testing machine was used to apply an uniaxial compression at quasi-static strain rates. Reinforced agglomerated cork was found to be anisotropic and strain-rate dependant. Its micro-structure reveals at complex composite material influencing strongly mechanical properties. Both Young's modulus and absorbed energy density at 0.6 strain increase with the cross-head speed displacement. From 12.7 MPa and 0.77 J · mm −3 when compressed at 0.05 mm · min −1 to 19.9 MPa and 1.44 J · mm −3 at 500 mm · min −1 in the Off-plane direction
    • 

    corecore