854 research outputs found

    Crystal growth and ambient and high pressure study of the reentrant superconductor Tm_2Fe_3Si_5

    Full text link
    We report single crystal growth of the reentrant superconductor Tm_2Fe_3Si_5, and measurements of the anisotropic static magnetic susceptibility \chi(T) and isothermal magnetization M(H), ac susceptibility \chi_ac(T), electrical resistivity \rho(T) and heat capacity C(T) at ambient pressure and \chi_ac(T) at high pressure. The magnetic susceptibility along the c-axis \chi_c(T) shows a small maximum around 250 K and does not follow the Curie-Weiss behavior while the magnetic susceptibility along the a-axis \chi_a(T) follows a Curie-Weiss behavior between 130 K and 300 K with a Weiss temperature \theta and an effective magnetic moment \mu_eff which depend on the temperature range of the fit. The easy axis of magnetization is perpendicular to the c-axis and \chi_a/\chi_c = 3.2 at 1.8 K. The ambient pressure \chi_ac(T) and C(T) measurements confirm bulk antiferromagnetic ordering at T_N = 1.1 K. The sharp drop in \chi_ac below T_N is suggestive of the existence of a spin-gap. We observe superconductivity only under applied pressures P\geq 2 kbar. The temperature-pressure phase diagram showing the non-monotonic dependence of the superconducting transition temperature T_c on pressure P is presented.Comment: 7 pages, 8 figure

    Determination of the Joint Confidence Region of Optimal Operating Conditions in Robust Design by Bootstrap Technique

    Full text link
    Robust design has been widely recognized as a leading method in reducing variability and improving quality. Most of the engineering statistics literature mainly focuses on finding "point estimates" of the optimum operating conditions for robust design. Various procedures for calculating point estimates of the optimum operating conditions are considered. Although this point estimation procedure is important for continuous quality improvement, the immediate question is "how accurate are these optimum operating conditions?" The answer for this is to consider interval estimation for a single variable or joint confidence regions for multiple variables. In this paper, with the help of the bootstrap technique, we develop procedures for obtaining joint "confidence regions" for the optimum operating conditions. Two different procedures using Bonferroni and multivariate normal approximation are introduced. The proposed methods are illustrated and substantiated using a numerical example.Comment: Two tables, Three figure

    Magnetic Ordering and Superconductivity in the RE2_2Ir3_3Ge5_5 (RE = Y, La-Tm, Lu) System

    Full text link
    We find that the compounds for RE = Y, La-Dy, crystallize in the tetragonal Ibam (U2_2Co3_3Si5_5 type) structure whereas the compounds for RE = Er-Lu, crystallize in a new orthorhombic structure with a space group Pmmn. Samples of Ho2_2Ir3_3Ge5_5 were always found to be multiphase. The compounds for RE = Y to Dy which adopt the Ibam type structure show a metallic resistivity whereas the compounds with RE = Er, Tm and Lu show an anomalous behavior in the resistivity with a semiconducting increase in ρ\rho as we go down in temperature from 300K. Interestingly we had earlier found a positive temperature coefficient of resistivity for the Yb sample in the same temperature range. We will compare this behavior with similar observations in the compounds RE3_3Ru4_4Ge13_{13} and REBiPt. La2_2Ir3_3Ge5_5 and Y2_2Ir3_3Ge5_5 show bulk superconductivity below 1.8K and 2.5K respectively. Our results confirm that Ce2_2Ir3_3Ge5_5 shows a Kondo lattice behavior and undergoes antiferromagnetic ordering below 8.5K. Most of the other compounds containing magnetic rare-earth elements undergo a single antiferromagnetic transition at low temperatures (T\leq12K) while Gd2_2Ir3_3Ge5_5, Dy2_2Ir3_3Ge5_5 and Nd2_2Ir3_3Ge5_5 show multiple transitions. The TN_N's for most of the compounds roughly scale with the de Gennes factor. which suggests that the chief mechanism of interaction leading to the magnetic ordering of the magnetic moments may be the RKKY interaction.Comment: 25 pages, 16 figure

    Unusual Ground State Properties of the Kondo-Lattice Compound Yb2Ir3Ge5

    Full text link
    We report sample preparation, structure, electrical resistivity, magnetic susceptibility and heat capacity studies of a new compound Yb2_2Ir3_3Ge5_5. We find that this compound crystallizes in an orthorhombic structure with a space group PMMN unlike the compound Ce2_2Ir3_3Ge5_5 which crystallizes in the tetragonal IBAM (U2_2Co3_3Si5_5 type) structure. Our resistivity measurements indicate that the compound Yb2_2Ir3_3Ge5_5 behaves like a typical Kondo lattice system with no ordering down to 0.4 K. However, a Curie-Weiss fit of the inverse magnetic susceptibility above 100 K gives an effective moment of only 3.66 μ\muB_B which is considerably less than the theoretical value of 4.54 μ\muB_B for magnetic Yb3+^3+ ions. The value of θP\theta_{P} = -15.19 K is also considerably higher indicating the presence of strong hybridization. An upturn in the low temperature heat capacity gives an indication that the system may order magnetically just below the lowest temperature of our heat capacity measurements (0.4 K). The structure contains two sites for Yb ions and the present investigation suggests that Yb may be trivalent in one site while it may be significantly lower (close to divalent) in the other.Comment: 9 pages, 4 figures. submitted to Phys. Rev.

    Antiferromagnetic ordering in the Kondo lattice system Yb2_2Fe3_3Si5_5

    Full text link
    Compounds belonging to the R2_2Fe3_3Si5_5 series exhibit unusual superconducting and magnetic properties. Although a number of studies have been made on the first reentrant antiferromagnet superconductor Tm2_2Fe3_3Si5_5, the physical properties of Yb2_2Fe3_3Si5_5 are largely unexplored. In this work, we attempt to provide a comprehensive study of bulk properties such as, resistivity, susceptibility and heat-capacity of a well characterized polycrystalline Yb2_2Fe3_3Si5_5. Our measurements indicate that Yb3+^{3+} moments order antiferromagnetically below 1.7 K. Moreover, the system behaves as a Kondo lattice with large Sommerfeld coefficient (γ\gamma) of 0.5~J/Yb mol K2^{2} at 0.3 K, which is well below TN_N. The absence of superconductivity in Yb2_2Fe3_3Si5_5 down to 0.3 K at ambient pressure is attributed to the presence of the Kondo effect.Comment: 10 pages, 3 figures, tex document. A fuller version has appeared in PRB. Here we have omitted the figures showing the crystal structure and the fitting of the X-ray pattern. Also the table with the lattice parameters obtained from fitting has been remove

    Field-induced water electrolysis switches an oxide semiconductor from an insulator to a metal

    Full text link
    Here we demonstrate that water-infiltrated nanoporous glass electrically switches an oxide semiconductor from an insulator to metal. We fabricated the field effect transistor structure on an oxide semiconductor, SrTiO3, using 100%-water-infiltrated nanoporous glass - amorphous 12CaO*7Al2O3 - as the gate insulator. For positive gate voltage, electron accumulation, water electrolysis and electrochemical reduction occur successively on the SrTiO3 surface at room temperature, leading to the formation of a thin (~3 nm) metal layer with an extremely high electron concentration of 10^15-10^16 cm^-2, which exhibits exotic thermoelectric behaviour.Comment: 21 pages, 12 figure
    corecore