12 research outputs found

    hERG1 Channels Regulate VEGF-A Secretion in Human Gastric Cancer: Clinicopathological Correlations and Therapeutical Implications

    Get PDF
    Purpose: hERG1 channels are aberrantly expressed in several types of human cancers, where they affect different aspects of cancer cell behavior. A thorough analysis of the functional role and clinical significance of hERG1 channels in gastric cancer is still lacking. Experimental Design: hERG1 expression was tested in a wide (508 samples) Italian cohort of surgically resected patients with gastric cancer, by immunohistochemistry and real-time quantitative PCR. The functional link between hERG1 and the VEGF-A was studied in different gastric cancer cell lines. The effects of hERG1 and VEGF-A inhibition were evaluated in vivo in xenograft mouse models. Results: hERG1 was positive in69% of the patients and positivity correlated with Lauren's intestinal type, fundus localization of the tumor, G1-G2 grading, I and II tumor-node-metastasis stage, and VEGF-A expression. hERG1 activity modulated VEGF-A secretion, through an AKT-dependent regulation of the transcriptional activity of the hypoxia inducible factor. Treatment of immunodeficient mice xenografted with human gastric cancer cells, with a combination of hERG1 blockers and anti-VEGF-A antibodies, impaired tumor growth more than single-drug treatments. Conclusion: Our results show that hERG1 (i) is aberrantly expressed in human gastric cancer since its early stages; (ii) drives an intracellular pathway leading to VEGF-A secretion; (iii) can be exploited to identify a gastric cancer patients' group where a combined treatment with antiangiogenic drugs and noncardiotoxic hERG1 inhibitors could be proposed. © 2014 American Association for Cancer Research

    VEGF-A clinical significance in gastric cancers: Immunohistochemical analysis of a wide Italian cohort

    No full text
    PURPOSE: The clinical significance of VEGF-A expression in gastric cancer (GC) has been reported with contradicting results. We analyzed the expression and clinical significance of VEGF-A in a wide Italian cohort of GC specimens. METHODS: VEGF-A expression was tested by immunohistochemistry in 507 patients with GC of all clinical stages. The impact of VEGF-A on overall survival (OS) was evaluated in conjunction with clinical and pathological parameters. RESULTS: In the Italian cohort we studied VEGF-A was not an independent prognostic factor neither at the univariate nor at multivariate analysis. CONCLUSIONS: Although frequently expressed, in our study VEGF-A was not able to discriminate between groups of patients with different risk

    hERG1 channels regulate VEGF-A secretion in human gastric cancer: clinicopathological correlations and therapeutical implications.

    No full text
    PURPOSE: hERG1 channels are aberrantly expressed in several types of human cancers, where they affect different aspects of cancer cell behavior. A thorough analysis of the functional role and clinical significance of hERG1 channels in gastric cancer is still lacking. EXPERIMENTAL DESIGN: hERG1 expression was tested in a wide (508 samples) Italian cohort of surgically resected patients with gastric cancer, by immunohistochemistry and real-time quantitative PCR. The functional link between hERG1 and the VEGF-A was studied in different gastric cancer cell lines. The effects of hERG1 and VEGF-A inhibition were evaluated in vivo in xenograft mouse models. RESULTS: hERG1 was positive in 69% of the patients and positivity correlated with Lauren's intestinal type, fundus localization of the tumor, G1-G2 grading, I and II tumor-node-metastasis stage, and VEGF-A expression. hERG1 activity modulated VEGF-A secretion, through an AKT-dependent regulation of the transcriptional activity of the hypoxia inducible factor. Treatment of immunodeficient mice xenografted with human gastric cancer cells, with a combination of hERG1 blockers and anti-VEGF-A antibodies, impaired tumor growth more than single-drug treatments. CONCLUSION: Our results show that hERG1 (i) is aberrantly expressed in human gastric cancer since its early stages; (ii) drives an intracellular pathway leading to VEGF-A secretion; (iii) can be exploited to identify a gastric cancer patients' group where a combined treatment with antiangiogenic drugs and noncardiotoxic hERG1 inhibitors could be proposed

    Synthetic polymeric biomaterials for wound healing: a review

    No full text

    Enhancing the accuracy of next-generation sequencing for detecting rare and subclonal mutations

    No full text
    corecore