887 research outputs found

    Cenozoic sedimentary and volcanic rocks of New Zealand: A reference volume of lithology, age and paleoenvironments with maps (PMAPs) and database.

    Get PDF
    This volume presents descriptive geological data and text about each Cenozoic sedimentary and volcanic geological unit to formation and member level (in some cases) exposed on land in New Zealand, including their lithology, stratigraphic age and inferred environment of deposition or emplacement. These data are illustrated as two types of PMAPS: a present-day paleoenvironment map of New Zealand; and as restored paleoenvironment maps, one for each million years from 65 Ma to the present. These information and data underpin the development of a new Cenozoic paleogeographical model of New Zealand

    Las necesidades de graduados en tecnología textil de la industria y el problema de atraer a los alumnos que terminan los estudios medios hacia los estudios universitarios de tecnología textil.

    Get PDF
    Debido a la falta de titulados universitarios en la industria textil, la Universidad de Manchester planificó una serie de acciones de acercamientos a alumnos de estudios medios mediante el cual se pretendía colocar en el mercado laboral a más ingenieros con estudios superiores.Peer Reviewe

    Comparing e-Learning Tools’ Success: The Case of Instructor–Student Interactive vs. Self-paced Tools

    Get PDF
    E-learning tools have profoundly transformed modern pedagogical approaches. Vendors provide different types of systems, such as self-paced (SP) and instructor–student interactive (ISI) e-learning tools. Although both types of tools represent promising solutions to facilitate the learning process, it is important to theoretically identify a framework to evaluate the success of these tools and assess whether one type of tool is more effective than another. Toward this end, we (1) propose a model to evaluate e-learning tools’ success by extending and contextualizing Seddon’s information systems (IS) success model for the e-learning environment and (2) formulate four hypotheses to predict the differences in the success factors between SP and ISI tools. We test the model and hypotheses using data from 783 students across seven higher education institutions in Hong Kong. The results support the proposed e-learning tool success model and three of the four hypotheses. ISI tools outperform SP tools in terms of system quality, perceived usefulness, satisfaction, and learning outcome

    Multi-parameter generalization of nonextensive statistical mechanics

    Full text link
    We show that the stochastic interpretation of Tsallis' thermostatistics given recently by Beck [Phys. Rev. Lett {\bf 87}, 180601 (2001)] leads naturally to a multi-parameter generalization. The resulting class of distributions is able to fit experimental results which cannot be reproduced within the Boltzmann's or Tsallis' formalism.Comment: ReVTex 4.0, 4 eps figure

    Towards an engineering model for curve squeal

    Get PDF
    Curve squeal is a strong tonal noise that may arise when a railway vehicle negotiates a curve. The wheel/rail contact model is the central part of prediction models, describing the frictional instability occurring in the contact during squeal. A previously developed time-domain squeal model considers the wheel and rail dynamics, and the wheel/rail contact is solved using Kalker’s nonlinear transient CONTACT algorithm with Coulomb friction. In this paper, contact models with different degree of simplification are compared to CONTACT within the previously developed squeal model in order to determine a suitable contact algorithm for an engineering curve squeal model. Kalker’s steady-state FASTSIM is evaluated, and, without further modification, shows unsatisfying results. An alternative transient single-point contact algorithm named SPOINT is formulated with the friction model derived from CONTACT. Comparing with the original model results, the SPOINT implementation results are promising and similar to results from CONTACT

    Mod4J: A Qualitative Case Study of Model-Driven Software Development

    Get PDF
    Model-driven software development (MDSD) has been on the rise over the past few years and is becoming more and more mature. However, evaluation in real-life industrial context is still scarce. In this paper, we present a case-study evaluating the applicability of a state-of-the-art MDSD tool, Mod4J, a suite of domain specific languages (DSLs) for developing administrative enterprise applications. Mod4J was used to partially rebuild an industrially representative application. This implementation was then compared to a base implementation based on elicited success criteria. Our evaluation leads to a number of recommendations to improve Mod4J. We conclude that having extension points for hand-written code is a good feature for a model driven software development environment

    Preheating After Modular Inflation

    Full text link
    We study (p)reheating in modular (closed string) inflationary scenarios, with a special emphasis on Kahler moduli/Roulette models. It is usually assumed that reheating in such models occurs through perturbative decays. However, we find that there are very strong non-perturbative preheating decay channels related to the particular shape of the inflaton potential (which is highly nonlinear and has a very steep minimum). Preheating after modular inflation, proceeding through a combination of tachyonic instability and broad-band parametric resonance, is perhaps the most violent example of preheating after inflation known in the literature. Further, we consider the subsequent transfer of energy to the standard model sector in scenarios where the standard model particles are confined to a D7-brane wrapping the inflationary blow-up cycle of the compactification manifold or, more interestingly, a non-inflationary blow up cycle. We explicitly identify the decay channels of the inflaton in these two scenarios. We also consider the case where the inflationary cycle shrinks to the string scale at the end of inflation; here a field theoretical treatment of reheating is insufficient and one must turn instead to a stringy description. We estimate the decay rate of the inflaton and the reheat temperature for various scenarios.Comment: 34 pages, 10 figures. Accepted for publication in JCA

    Analysing the Control Software of the Compact Muon Solenoid Experiment at the Large Hadron Collider

    Full text link
    The control software of the CERN Compact Muon Solenoid experiment contains over 30,000 finite state machines. These state machines are organised hierarchically: commands are sent down the hierarchy and state changes are sent upwards. The sheer size of the system makes it virtually impossible to fully understand the details of its behaviour at the macro level. This is fuelled by unclarities that already exist at the micro level. We have solved the latter problem by formally describing the finite state machines in the mCRL2 process algebra. The translation has been implemented using the ASF+SDF meta-environment, and its correctness was assessed by means of simulations and visualisations of individual finite state machines and through formal verification of subsystems of the control software. Based on the formalised semantics of the finite state machines, we have developed dedicated tooling for checking properties that can be verified on finite state machines in isolation.Comment: To appear in FSEN'11. Extended version with details of the ASF+SDF translation of SML into mCRL

    Forced Stratified Turbulence: Successive Transitions with Reynolds Number

    Full text link
    Numerical simulations are made for forced turbulence at a sequence of increasing values of Reynolds number, R, keeping fixed a strongly stable, volume-mean density stratification. At smaller values of R, the turbulent velocity is mainly horizontal, and the momentum balance is approximately cyclostrophic and hydrostatic. This is a regime dominated by so-called pancake vortices, with only a weak excitation of internal gravity waves and large values of the local Richardson number, Ri, everywhere. At higher values of R there are successive transitions to (a) overturning motions with local reversals in the density stratification and small or negative values of Ri; (b) growth of a horizontally uniform vertical shear flow component; and (c) growth of a large-scale vertical flow component. Throughout these transitions, pancake vortices continue to dominate the large-scale part of the turbulence, and the gravity wave component remains weak except at small scales.Comment: 8 pages, 5 figures (submitted to Phys. Rev. E
    corecore