73 research outputs found

    Competitive reaction modelling in aqueous systems. The case of contemporary reduction of dichromates and nitrates by nZVI

    Get PDF
    In various Countries, Cr(VI) still represents one of the groundwater pollutant of major concern, mainly due to its high toxicity, furthermore enhanced by the synergic effect in presence of other contaminants. As widely reported in the recent literature, nanoscale zero valent iron particles (nZVI-p) have been proved to be particularly effective in the removal of a wide range of contaminants from polluted waters. In this work, experimental tests of hexavalent chromium reduction in polluted groundwater in the presence of nitrate by nZVI-p are presented and discussed. The effect of different nitrate amounts on Cr(VI) reduction mechanism was investigated and the obtained results were successfully interpreted by the proposed kinetic model. nZVI-p produced by the classical borohydride reduction method were added in to synthetic solutions with the initial concentration of Cr(VI) set at 93, 62 and 31 mg L-1 and different nitrate contents in the range 10-100 mg L-1. According to the experimental results, nitrate showed an adverse effect on Cr(VI) reduction, depending on the nZVI/Cr(VI) and Cr(VI)/NO3 - ratio. The proposed kinetic model soundly grasps the competitive nature of the Cr(VI) reduction process when other chemical species are present in the treated solution

    Production of nano zero valent iron particles by means of a spinning disk reactor

    Get PDF
    Nitrates are considered hazard compounds for human health due to their tendency to be reduced to nitrites, in particular in reducing environment. Nano zero valent iron (nZVI) represents an efficient and low-cost adsorbent/reductive agent for nitrate removal from groundwater. In this work, nZVI particles were produced by means of two different equipment types based on the same chemical synthesis method: a batch stirred tank reactor (BSTR) and a spinning disk reactor (SDR). This latter apparatus is capable to strongly promote micromixing at a steady-state, continuous condition, and such as qualifies to subsist in the framework of process intensification. Particle size distribution (PSD) of the obtained nZVI particles were measured by a DLS technique. The removal efficiency of the produced nVI particles were checked by using two NO3-solutions (1.6 and 6.4 mM) and by monitoring nitrate concentration reduction rates at selected time intervals. Results showed that the nZVI particles produced by SDR have a narrow PSD with a mean diameter of 65nm; on the contrary, particles produced by BSTR shows bimodal PSD with modal sizes of 105 nm and 400 nm, respectively. Experimental tests of nitrates reduction in water have been performed, using both the particles produced by the above mentioned techniques. Results of batch tests showed that the highest removal efficiency of nitrates was observed by using the nZVI particles produced by means of SDR, as a consequence of the higher average specific surface. Since nitrate removal process involves both reduction and adsorption processes, the removal mechanism has been investigated, and the pseudo-first-order reduction kinetic model was successfully tested and reported in both cases

    Artificial aggregate from non metallic automotive shredder residue

    Get PDF
    Until 2005 in the European Union (EU) approximately 12 M vehicles were yearly shredded, and 8 or 9 M t/ year of waste was produced. About 14 million tons of End of Life Vehicles (ELVs) are foreseen by 2015. This huge amount of waste must be treated and disposed of in a sustainable way. The most common treatment technologies, involve ELVs shredding to recover iron and steel (70%) and non ferrous metals (5%) from vehicles. The remaining fraction, called Automotive Shredder Residue (ASR), and representing about 25% wt. of each vehicle, is generally landfilled. For more than two thirds, this last residue deals with combustible materials (fibers, polyethylene etc..), suitable to be reused as a fuel, but a substantial amount of soil particles, metals, glasses and plastics residues are also present. Consequently, a new sustainable way to reuse ASR is to separate the organic from the inorganic fraction, and use them in combustion plants, gasification and in the cement industry, respectively. Regarding this second way of recovery, several studies have been already successfully performed with the aim of transforming ASR into aggregates for asphalt or cement mixes, by thermal treatment followed by chemical treatment, or by physical processes, such as granulation. In this work, a selected fraction of non metallic automobile shredder residue was immobilized in granules produced at room temperature in a pilot scale granulator. Granules were obtained by mixing selected amount of ASR with a binder (cement or lime) in the presence of additions (fly ash) and admixtures. The final aim of this work was to investigate the mechanical properties of concrete samples produced using the artificial aggregate obtained through different combinations of ASR, fly ash and binder. Additional freeze and thaw tests were finally performed to assess concrete durability along time

    UAS testing in low pressure and temperature conditions

    Get PDF
    The increasing demand of UAS has generated interest in the scientific community to understand how the environmental parameters affect performance of these emerging vehicles. A bias in the existing tests has been the nonreproducibility of the same climatic conditions. Therefore, UAS have not been fully exploited by the marker so far. Standard protocols for UAS testing in unconventional weather conditions have not been investigated from both industry and academic research. Temperature and pressure are environmental parameters that affect the aerodynamics of Unmanned Aircraft Systems (UAS). Low Reynolds numbers are common for small scale UAS and have a strongly influence on propeller and vehicle capabilities. In the past years, experimental studies on the effects of low Reynolds numbers have been carried out in wind tunnel facilities in conventional atmospheres (ambient temperature and pressure). Moreover, the complexity of the aerodynamic field results in propeller and full vehicle performance prediction methods with limited accuracy. In this paper an experimental setup inside a climatic and hypobaric laboratory is used to highlight temperature and pressure influence on single propeller and full vehicle performance in static conditions (hover). Test results are discussed and provided to the reader, highlighting the complexities of the measurements when extreme temperature and low pressure are set. The main contribution of this study is a set of experimental data to pave the way for a deep investigation on harsh environmental conditions on UAS propulsion system

    Unmanned Aircraft Systems Performance in a Climate-Controlled Laboratory

    Get PDF
    AbstractDespite many research studies focus on strategies to improve autopilot capabilities and bring artificial intelligence onboard Unmanned Aircraft Systems (UAS), there are still few experimental activities related to these vehicle performance under unconventional weather conditions. Air temperature and altitudes directly affect thrust and power coefficients of small scale propeller for UAS applications. Reynolds numbers are usually within the range 10,000 to 100,000 and important aerodynamic effects, such as the laminar separation bubbles, occur with a negative impact on propulsion performance. The development of autonomous UAS platforms to reduce pilot work-load and allow Beyond Visual Line of Sight (BVLOS) operations requires experimental data to validate capabilities of these innovative vehicles. High quality data are needed for a deep understanding of limitations and opportunities of UAS under unconventional flight conditions. The primary objective of this article is to present the characterization of a propeller and a quadrotor capabilities in a pressure-climate-controlled chamber. Mechanical and electrical data are measured with a dedicated test setup over a wide range of temperatures and altitudes. Test results are presented in terms of thrust and power coefficient trends. The experimental data shows low Reynolds numbers are responsible for degraded thrust performance. Moreover, details on brushless motor capabilities are also discussed considering different temperature and pressure conditions. The experimental data collected in the test campaign will be leveraged to improve UAS design, propulsion system modelling as well as to provide guidelines for safe UAS operations in extreme environments

    Synthesis and CO2 adsorption capacity of biomass waste functionalized by nanoparticles

    Get PDF
    Two composite materials were synthesized based on sodium alginate and biochar derived from licorice processing waste functionalized with silicon dioxide nanoparticles (SiO2) and iron oxide (Fe2O3), respectively, enabling the valorization of industrial waste. The adsorptive capacities of the two materials (Alg-SiO2 and BCLFe2O3) toward CO2 in the gaseous stream with nitrogen were evaluated by acid titration of carbonates present in a trap for CO2 consisting of a KOH solution placed downstream of the adsorption column. The aim of the present work is to evaluate the CO2 adsorption capacity of material functionalized by nanoparticles. Adams–Bohart, Thomas models, and % removal efficiency curves for the adsorption were examined to investigate the dynamic behavior of the column. From the tests performed in CO2 and N2 flow, the BCL-Fe2O3 material was demonstrated to have an adsorbent higher capacity than Alg-SiO2, respectively CO2 adsorbed 25 and 6 mg/g

    Toward green steel: Modeling and environmental economic analysis of iron direct reduction with different reducing gases

    Get PDF
    The objective of the paper is to simulate the whole steelmaking process cycle based on Direct Reduced Iron and Electric Arc Furnace technologies, by modeling for the first time the reduction furnace based on kinetic approach, to be used as a basis for the environmental and techno-economic plant analysis by adopting different reducing gases. In addition, the impact of carbon capture section is discussed. A complete profitability analysis has been conducted for the first time, adopting a Monte Carlo simulation approach. In detail, the use of syngas from methane reforming, syngas and hydrogen from gasification of municipal solid waste, and green hydrogen from water electrolysis are analyzed. The results show that the Direct Reduced Iron process with methane can reduce CO2 emissions by more than half compared to the blast furnace based-cycle, and with the adoption of carbon capture, greenhouse gas emissions can be reduced by an additional 40%. The use of carbon capture by amine scrubbing has a limited economic disadvantage compared to the scenario without it, becoming profitable once carbon tax is included in the analysis. However, it is with the use of green hydrogen from electrolyzer that greenhouse gas emissions can be cut down almost completely. To have an environmental benefit compared with the methane-based Direct Reduced Iron process, the green hydrogen plant must operate for at least 5136 h per year (64.2% of the plant's annual operating hours) on renewable energy. In addition, the use of syngas and separated hydrogen from municipal solid waste gasification is evaluated, demonstrating its possible use with no negative effects on the quality of produced steel. The results show that hydrogen use from waste gasification is more economic with respect to green hydrogen from electrolysis, but from the environmental viewpoint the latter results the best alternative. Comparing the use of hydrogen and syngas from waste gasification, it can be stated that the use of the former reducing gas results preferable, from both the economic and environmental viewpoint

    Combined clean hydrogen production and bio-active compounds recovery from spent coffee grounds. A multi-perspective analysis

    Get PDF
    This study deals with the process simulation of an integrated system for energy production and valuable compounds recovery from spent coffee ground biomass and plasmix (non-recyclable plastic waste). The devised process consists of three maine units: a sub-critical water extraction column for the recovery of bio-compounds, an oxy-combustor of residual biomass and plasmix streams coupled with a production power energy unit, and a solid oxide electrolyzer (SOEC) for the production of pure H2 and O2. The process was exhaustively analyzed from an energy, exergy, environmental and economic point of view. The results of the analysis provided energy and exergy efficiencies higher than 60%, and the environmental analysis (CO2-cycle analysis) demonstrated a significant advantage of the process with respect to other hydrogen production methods. Finally, the feasibility of a plant with no net Greenhouse Gas emissions was shown to markedly depend on the costs associated to renewable energy sources

    Perspectives in nanotechnology based innovative applications for the environment

    Get PDF
    In this perspective paper, the actual trends in nanotechnology based innovative applications for the environment are analyzed and possible future trends were studied. On the basis of the relevant topics of the NINE congress held in Rome, 2016, a bibliographical search was performed on papers fitting in one or more categories within the last 5 years, that is: 1. Nanosensors and bionanosensors for environmental characterization and monitoring 2. Technologies for the production of Nanomaterials for the environment 3. Nanostructured materials for advanced remediation processes 4. Nano-based water and wastewater treatment processes 5. Membrane processes for the environment 6. Health and safety issues concerning Nanomaterials 7. Education on Environmental Engineering and Nanotechnology. A yearly count of contributions was performed and taken as an indicator of interest of the specific topic within the wide broad scientific community. In a second step, the resulting data was analyzed by regression techniques to estimate the trend in the next future and to evaluate the next challenges within the international research framework

    Sustainable production of hydrogen, pyridine and biodiesel from waste-to-chemicals valorization plant: Energy, exergy and CO2-cycle analysis

    Get PDF
    This study deals with the simulation of waste-to-chemicals plant for the conversion of municipal solid waste to hydrogen, biodiesel and pyridine. The study analyses a Waste to Chemical plant, in order to evaluate the future scenarios of the integrated management of municipal waste from a technical and economic point of view and compare them, both in terms of material flows and related costs. In a first phase, the characteristics of the simulation model created with the help of the Aspen Plus software are analysed. Subsequently, with the help of a calculation model, the operating costs, emissions and energy and exergy efficiency are evaluated for the two identified scenarios. Starting from about 3000 t/h of waste, as a main result, about 8.4 t/h of pyridine and 300 t/h of biodiesel are produced and about 7.94 t/h of H2 as a by-product. The main purpose of the design cycle is to reduce the amount of waste to landfill, valorising it and limiting CO2 emitted in the atmosphere at the same time. Two system configurations are considered to maximize the reuse of all waste streams. In particular, the comparison was made between two scenarios: in the first the stream separated by extraction is considered a waste for the plant, while in the second scenario, this stream is sent to a fermentation section to obtain an excess bioethanol stream, which represents another product with high added value. The treatment of the stream separated from the extraction in the second scenario allows to obtain an additional stream of bioethanol in addition to the target products. A complete energy, exergy, environmental and economic analysis of the simulated plant have been carried out. The work shown that in the second case the waste exergy is dramatically reduced, leading to a raise of exergy efficiency from 30.2% up to 84.9%. While, from the environmental point of view both scenarios have low CO2 emissions, 0.52 kgCO2/kg products and 0.87 kgCO2/kg products respectively
    • …
    corecore