9,380 research outputs found

    Physical Conditions in the Narrow-Line Region of M51

    Full text link
    We have investigated the physical conditions in the narrow-line region (NLR) of M51 using long-slit spectra obtained with the Space Telescope Imaging Spectrograph (STIS) aboard the Hubble Space Telescope (HST) and 3.6 cm radio continuum observations obtained with the Very Large Array (VLA). Emission-line diagnostics were employed for nine NLR clouds, which extend 2.5" (102 pc) from the nucleus, to examine the electron density, temperature, and ionization state of the NLR gas. The emission-line ratios are consistent with those typically found in Seyfert nuclei and indicate that within the inner near-nuclear region (r ~< 1") the ionization decreases with increasing radius. Upper-limits to the [O III] electron temperature (T ~< 11,000 K) for the inner NLR clouds indicate that photoionization is the dominant ionization mechanism close to the nucleus. The emission-line fluxes for most of the NLR clouds can be reproduced reasonably well by simple photoionization models using a central power-law continuum source and supersolar nitrogen abundances. Shock+precursor models, however, provide a better fit to the observed fluxes of an NLR cloud ~2.5" south of the nucleus that is identified with the extra-nuclear cloud (XNC). The large [O III] electron temperature of this cloud (T = 24,000 K) further suggests the presence of shocks. This cloud is straddled by two radio knots and lies near the location where a weak radio jet, ~2.5" (102pc) in extent, connects the near-nuclear radio emission with a diffuse lobe structure spanning \~4" (163 pc). It is plausible that this cloud represents the location where the radio jet impinges on the disk ISM.Comment: 25 pages, 26 figures (9 color), 7 tables. Accepted for publication in the Astrophysical Journa

    Spitzer Uncovers Active Galactic Nuclei Missed by Optical Surveys in 7 Late-type Galaxies

    Full text link
    We report the discovery using Spitzers high resolution spectrograph of 7 Active Galactic Nuclei (AGN) in a sample of 32 late-type galaxies that show no definitive signatures of AGN in their optical spectra. Our observations suggest that the AGN detection rate in late-type galaxies is possibly 4 times larger than what optical spectroscopic observations alone suggest. We demonstrate using photoionization models with an input AGN and an extreme EUV-bright starburst ionizing radiation field that the observed mid-infrared line ratios cannot be replicated unless an AGN contribution, in some cases as little as 10% of the total galaxy luminosity, is included. These models show that when the fraction of the total luminosity due to the AGN is low, optical diagnostics are insensitive to the presence of the AGN. In this regime of parameter space, the mid-infrared diagnostics offer a powerful tool for uncovering AGN missed by optical spectroscopy. The AGN bolometric luminosities in our sample range from ~3 X 10^41 - ~2 X 10^43 ergs s^-1, which, based on the Eddington limit, corresponds to a lower mass limit for the black hole that ranges from ~3 X 10^3Mdot to as high as ~1.5 X 10^5Mdot. These lower mass limits however do not put a strain on the well-known relationship between the black hole mass and the host galaxy's stellar velocity dispersion established in predominantly early-type galaxies. Our findings add to the growing evidence that black holes do form and grow in low-bulge environments and that they are significantly more common than optical studies indicate.Comment: 8 figures, 17 pages, astro-ph\0801.2766 (Abel & Satyapal 2008; ApJ accepted) and this posting designed to form a two-part investigatio

    Gas Metallicity of Narrow-Line Regions in Narrow-Line Seyfert 1 Galaxies and Broad-Line Seyfert 1 Galaxies

    Get PDF
    We investigate gas metallicity of narrow-line regions in narrow-line Seyfert 1 galaxies (NLS1s) and broad-line ones (BLS1s) in order to examine whether or not there is a difference in the gas metallicity between the two populations of Seyfert 1 galaxies. We apply two methods to study this issue. One is to use the emission-line flux ratio of [N II]6583/H_alpha in combination with some other optical emission-line flux ratios. This method, which has been often applied to Seyfert 2 galaxies, suggests that the gas metallicity of narrow-line regions is indistinguishable or possibly higher in BLS1s than in NLS1s. On the contrary, the other method in which only forbidden emission-line fluxes are used results in that NLS1s tend to possess metal-richer gas in the narrow-line regions than BLS1s. We point out that this inconsistency may be owing to the contamination of the broad component of permitted lines into the narrow component of ones in the first method. Since the results derived by using only forbidden emission-line fluxes do not suffer from any uncertainty of the fitting function for the broad component of Balmer lines, the results from this method are more reliable than those derived by using permitted lines. We thus conclude that the gas metallicity of narrow-line regions tends to be higher in NLS1s than in BLS1s.Comment: 12 pages including 10 figures, to appear in The Astrophysical Journa

    The X-ray Properties of the Nearby Star-Forming Galaxy IC 342: The XMM-Newton View

    Full text link
    We present the X-ray properties of IC342 using XMM-Newton. Thirty-five sources are detected coincident with the disk of IC342 (more than tripling the number known), of which ~31 are likely to be intrinsic to IC342. This population shows a range of spectral properties and has an X-ray luminosity function slope and infrared luminosity comparable to that of starburst galaxies such as M82 and the Antennae, while its relative lack of extended X-ray emission is similar to the properties of quiescent spirals. We do detect long-term variability between this observation and the 1991 ROSAT and 1993/2000 ASCA observations for five sources. Notably, the second most luminous source IC342 X-2 is is found to be in its the lowest luminosity state observed for X-2 to date, although the slope of the spectrum is intermediate between the previously observed low/hard and high/soft states. IC342 X-1, on the other hand, is found to be in an identical state to that observed in 2000 with ASCA. Assuming X-1 is in an anomalous very high (VH) state, then either (1) X-1 has remained in this state between 2000 and 2002, and is therefore the longest duration VH-state binary ever observed, or (2) it was simply caught in a VH state by chance in both the 2000 ASCA and 2002 XMM-Newton observations. We have also confirmed the ROSAT HRI result that the nucleus of IC342 is made up of both point-like and extended emission. The relative fluxes of the two spectral components suggest that the nucleus is complex, with a soft extended component contributing approximately half of the total luminosity. (Abridged)Comment: AJ in press (December 2003), 9 pages, 7 figures, 2 tables, emulateapj.cls use

    A Chandra Snapshot Survey of IR-bright LINERs: A Possible Link Between Star Formation, AGN Fueling, and Mass Accretion

    Full text link
    We present results from a high resolution X-ray imaging study of nearby LINERs observed by Chandra. This study complements and extends previous X-ray studies of LINERs, focusing on the under-explored population of nearby dust-enshrouded infrared-bright LINERs. The sample consists of 15 IR-bright LINERs (L_FIR/L_B > 3), with distances that range from 11 to 26 Mpc. Combining our sample with previous Chandra studies we find that ~ 51% (28/55) of the LINERs display compact hard X-ray cores. The nuclear 2-10 keV luminosities of the galaxies in this expanded sample range from ~ 2 X 10^38 ergs s^-1 to ~ 2 X 10^44 ergs s^-1. We find an intriguing trend in the Eddington ratio vs. L_FIR and L_FIR/L_B for the AGN-LINERs in the expanded sample that extends over seven orders of magnitude in L/L_Edd. This correlation may imply a link between black hole growth, as measured by the Eddington ratio, and the star formation rate (SFR), as measured by the far-IR luminosity and IR-brightness ratio. If the far-IR luminosity is an indicator of the molecular gas content in our sample of LINERs, our results may further indicate that the mass accretion rate scales with the host galaxy's fuel supply. We discuss the potential implications of our results in the framework of black hole growth and AGN fueling in low luminosity AGN. (Abridged)Comment: Accepted for publication by ApJ 14 pages, 13 figure

    Dense Molecular Gas Associated with the Circumnuclear Star Forming Ring in the Barred Spiral Galaxy NGC 6951

    Get PDF
    We present high resolution (3" - 5") observations of CO(1-0) and HCN(1-0) emission from the circumnuclear star forming ring in the barred spiral galaxy NGC 6951, a host of a type-2 Seyfert, using the Nobeyama Millimeter Array and 45 m telescope. We find that most of the HCN emission is associated with the circumnuclear ring, where vigorous star formation occurs. The HCN to CO integrated intensity ratio is also enhanced in the star forming ring; the peak value of HCN/CO ratio is 0.18, which is comparable to the ratio in the starbursts NGC 253 and M82. The formation mechanism of dense molecular gas has been investigated. We find that the shocks along the orbit crowding do not promote the formation of the dense molecular gas effectively but enhance the presence of low density GMCs. Instead, gravitational instabilities of the gas can account for the dense molecular gas formation. The HCN/CO ratio toward the Seyfert nucleus of NGC 6951 is a rather normal value (0.086), in contrast with other Seyferts NGC 1068 and M51 where extremely high HCN/CO value of ~ 0.5 have been reported.Comment: 33 pages, 17 figures, to appear in the Astrophysical Journa

    FUSE Observations of the Magellanic Bridge Gas toward Two Early-Type Stars: Molecules, Physical Conditions, and Relative Abundance

    Full text link
    We discuss FUSE observations of two early-type stars, DI1388 and DGIK975, in the low density and low metallicity gas of Magellanic Bridge (MB). Toward DI1388, the FUSE observations show molecular hydrogen, O VI, and numerous other atomic or ionic transitions in absorption, implying the presence of multiple gas phases in a complex arrangement. The relative abundance pattern in the MB is attributed to varying degrees of depletion onto dust similar to that of halo clouds. The N/O ratio is near solar, much higher than N/O in damped Ly-alpha systems, implying subsequent stellar processing to explain the origin of nitrogen in the MB. The diffuse molecular cloud in this direction has a low column density and low molecular fraction. H2 is observed in both the Magellanic Stream and the MB, yet massive stars form only in the MB, implying significantly different physical processes between them. In the MB some of the H2 could have been pulled out from the SMC via tidal interaction, but some also could have formed in situ in dense clouds where star formation might have taken place. Toward DGIK975, the presence of neutral, weakly and highly ionized species suggest that this sight line has also several complex gas phases. The highly ionized species of O VI, C IV, and Si IV toward both stars have very broad features, indicating that multiple components of hot gas at different velocities are present. Several sources (a combination of turbulent mixing layer, conductive heating, and cooling flows) may be contributing to the production of the highly ionized gas in the MB. Finally, this study has confirmed previous results that the high-velocity cloud HVC 291.5-41.2+80 is mainly ionized composed of weakly and highly ions. The high ion ratios are consistent with a radiatively cooling gas in a fountain flow model.Comment: Accepted for publication in the ApJ (October 10, 2002). Added reference (Gibson et al. 2000

    Modulating spin transfer torque switching dynamics with two orthogonal spin-polarizers by varying the cell aspect ratio

    Full text link
    We study in-plane magnetic tunnel junctions with additional perpendicular polarizer for subnanosecond-current-induced switching memories. The spin-transfer-torque switching dynamics was studied as a function of the cell aspect ratio both experimentally and by numerical simulations using the macrospin model. We show that the anisotropy field plays a significant role in the dynamics, along with the relative amplitude of the two spin-torque contributions. This was confirmed by micromagnetic simulations. Real-time measurements of the reversal were performed with samples of low and high aspect ratio. For low aspect ratios, a precessional motion of the magnetization was observed and the effect of temperature on the precession coherence was studied. For high aspect ratios, we observed magnetization reversals in less than 1 ns for high enough current densities, the final state being controlled by the current direction in the magnetic tunnel junction cell.Comment: 6 pages, 7 figure

    Gas Dynamics in the LINER Galaxy NGC 5005: Episodic Fueling of a Nuclear Disk

    Full text link
    We report high-resolution CO(1-0) observations in the central 6 kpc of the LINER galaxy NGC 5005 with the Owens Valley Radio Observatory millimeter array. Molecular gas is distributed in three components - a ring at a radius of about 3 kpc, a strong central condensation, and a stream to the northwest of the nucleus but inside the 3 kpc ring. The central condensation is a disk of about 1 kpc radius with a molecular gas mass of 2 x 10^9 M_sun. The stream between the 3 kpc ring and the nuclear disk lies on a straight dust lane seen in the optical. If this material moves in the plane of the galaxy, it has a velocity offset by up to ~ 150 km/s from galactic rotation. We suggest that an optically inconspicuous stellar bar lying within the 3 kpc ring can explain the observed gas dynamics. This bar is expected to connect the nuclear disk and the ring along the position angle of the northwest stream. A position-velocity cut in this direction reveals features which match the characteristic motions of gas in a barred potential. Our model indicates that gas in the northwest stream is on an x_1 orbit at the bar's leading edge; it is falling into the nucleus with a large noncircular velocity, and will eventually contribute about 2 x 10^8 M_sun to the nuclear disk. If most of this material merges with the disk on its first passage of pericenter, the gas accretion rate during the collision will be 50 M_sun/yr. We associate the nuclear disk with an inner 2:1 Lindblad resonance, and the 3 kpc ring with an inner 4:1 Lindblad resonance. The high rate of bar-driven inflow and the irregular appearance of the northwest stream suggest that a major fueling event is in progress in NGC 5005. Such episodic (rather than continuous) gas supply can regulate the triggering of starburst and accretion activity in galactic nuclei. (abridged)Comment: 26 pages, 12 figures, AASTeX, ApJ in press (Feb. 10, 2000). For full-resolution figures, see http://www.ovro.caltech.edu/mm/science/science.htm
    corecore