12,308 research outputs found

    Spin-independent v-representability of Wigner crystal oscillations in one-dimensional Hubbard chains: The role of spin-charge separation

    Full text link
    Electrons in one-dimension display the unusual property of separating their spin and charge into two independent entities: The first, which derive from uncharged spin-1/2 electrons, can travel at different velocities when compared with the second, built from charged spinless electrons. Predicted theoretically in the early sixties, the spin-charge separation has attracted renewed attention since the first evidences of experimental observation, with usual mentions as a possible explanation for high-temperature superconductivity. In one-dimensional (1D) model systems, the spin-charge separation leads the frequencies of Friedel oscillations to suffer a 2k_F -- 4k_F crossover, mainly when dealing with strong correlations, where they are referred to as Wigner crystal oscillations. In non-magnetized systems, the current density functionals which are applied to the 1D Hubbard model are not seen to reproduce this crossover, referring to a more fundamental question: Are the Wigner crystal oscillations in 1D systems non-interacting v-representable? Or, is there a spin-independent Kohn-Sham potential which is able to yield spin-charge separation? Finding an appropriate answer to both questions is our main task here. By means of exact and DMRG solutions, as well as, a new approach of exchange-correlation potential, we show the answer to be positive. Specifically, the v-representable 4k_F oscillations emerge from attractive interactions mediated by positively charged spinless holes -- the holons -- as an additional contribution to the repulsive on-site Hubbard interaction

    Information entropy of classical versus explosive percolation

    Full text link
    We study the Shannon entropy of the cluster size distribution in classical as well as explosive percolation, in order to estimate the uncertainty in the sizes of randomly chosen clusters. At the critical point the cluster size distribution is a power-law, i.e. there are clusters of all sizes, so one expects the information entropy to attain a maximum. As expected, our results show that the entropy attains a maximum at this point for classical percolation. Surprisingly, for explosive percolation the maximum entropy does not match the critical point. Moreover, we show that it is possible determine the critical point without using the conventional order parameter, just analysing the entropy's derivatives.Comment: 6 pages, 6 figure

    Another analytic view about quantifying social forces

    Full text link
    Montroll had considered a Verhulst evolution approach for introducing a notion he called "social force", to describe a jump in some economic output when a new technology or product outcompetes a previous one. In fact, Montroll's adaptation of Verhulst equation is more like an economic field description than a "social force". The empirical Verhulst logistic function and the Gompertz double exponential law are used here in order to present an alternative view, within a similar mechanistic physics framework. As an example, a "social force" modifying the rate in the number of temples constructed by a religious movement, the Antoinist community, between 1910 and 1940 in Belgium is found and quantified. Practically, two temple inauguration regimes are seen to exist over different time spans, separated by a gap attributed to a specific "constraint", a taxation system, but allowing for a different, smooth, evolution rather than a jump. The impulse force duration is also emphasized as being better taken into account within the Gompertz framework. Moreover, a "social force" can be as here, attributed to a change in the limited need/capacity of some population, coupled to some external field, in either Verhulst or Gompertz equation, rather than resulting from already existing but competing goods as imagined by Montroll.Comment: 4 figures, 29 refs., 15 pages; prepared for Advances in Complex System

    Aperiodic quantum XXZ chains: Renormalization-group results

    Full text link
    We report a comprehensive investigation of the low-energy properties of antiferromagnetic quantum XXZ spin chains with aperiodic couplings. We use an adaptation of the Ma-Dasgupta-Hu renormalization-group method to obtain analytical and numerical results for the low-temperature thermodynamics and the ground-state correlations of chains with couplings following several two-letter aperiodic sequences, including the quasiperiodic Fibonacci and other precious-mean sequences, as well as sequences inducing strong geometrical fluctuations. For a given aperiodic sequence, we argue that in the easy-plane anisotropy regime, intermediate between the XX and Heisenberg limits, the general scaling form of the thermodynamic properties is essentially given by the exactly-known XX behavior, providing a classification of the effects of aperiodicity on XXZ chains. We also discuss the nature of the ground-state structures, and their comparison with the random-singlet phase, characteristic of random-bond chains.Comment: Minor corrections; published versio

    Modelling radiation emission in the transition from the classical to the quantum regime

    Get PDF
    An emissivity formula is derived using the generalised Fermi-Weizacker-Williams method of virtual photons which accounts for the recoil the charged particle experiences as it emits radiation. It is found that through this derivation the formula obtained by Sokolov et al using QED perturbation theory is recovered. The corrected emissivity formula is applied to nonlinear Thomson scattering scenarios in the transition from the classical to the quantum regime, for small values of the nonlinear quantum parameter \chi. Good agreement is found between this method and a QED probabilistic approach for scenarios where both are valid. In addition, signatures of the quantum corrections are identified and explored.Comment: 11 pages, 4 figures, submitted for publicatio

    A Method for Individual Source Brightness Estimation in Single- and Multi-band Data

    Full text link
    We present a method of reliably extracting the flux of individual sources from sky maps in the presence of noise and a source population in which number counts are a steeply falling function of flux. The method is an extension of a standard Bayesian procedure in the millimeter/submillimeter literature. As in the standard method, the prior applied to source flux measurements is derived from an estimate of the source counts as a function of flux, dN/dS. The key feature of the new method is that it enables reliable extraction of properties of individual sources, which previous methods in the literature do not. We first present the method for extracting individual source fluxes from data in a single observing band, then we extend the method to multiple bands, including prior information about the spectral behavior of the source population(s). The multi-band estimation technique is particularly relevant for classifying individual sources into populations according to their spectral behavior. We find that proper treatment of the correlated prior information between observing bands is key to avoiding significant biases in estimations of multi-band fluxes and spectral behavior, biases which lead to significant numbers of misclassified sources. We test the single- and multi-band versions of the method using simulated observations with observing parameters similar to that of the South Pole Telescope data used in Vieira, et al. (2010).Comment: 11 emulateapj pages, 3 figures, revised to match published versio
    • …
    corecore