12,718 research outputs found

    A Measurement of Secondary Cosmic Microwave Background Anisotropies with Two Years of South Pole Telescope Observations

    Get PDF
    We present the first three-frequency South Pole Telescope (SPT) cosmic microwave background (CMB) power spectra. The band powers presented here cover angular scales 2000 < ℓ < 9400 in frequency bands centered at 95, 150, and 220 GHz. At these frequencies and angular scales, a combination of the primary CMB anisotropy, thermal and kinetic Sunyaev-Zel'dovich (SZ) effects, radio galaxies, and cosmic infrared background (CIB) contributes to the signal. We combine Planck/HFI and SPT data at 220 GHz to constrain the amplitude and shape of the CIB power spectrum and find strong evidence for nonlinear clustering. We explore the SZ results using a variety of cosmological models for the CMB and CIB anisotropies and find them to be robust with one exception: allowing for spatial correlations between the thermal SZ effect and CIB significantly degrades the SZ constraints. Neglecting this potential correlation, we find the thermal SZ power at 150 GHz and ℓ = 3000 to be 3.65 ± 0.69 μK^2, and set an upper limit on the kinetic SZ power to be less than 2.8 μK^2 at 95% confidence. When a correlation between the thermal SZ and CIB is allowed, we constrain a linear combination of thermal and kinetic SZ power: D^(tSZ)_(3000) + 0.5D^(kSZ)_(3000) = 4.60 ± 0.63 μK^2, consistent with earlier measurements. We use the measured thermal SZ power and an analytic, thermal SZ model calibrated with simulations to determine σ_8 = 0.807 ± 0.016. Modeling uncertainties involving the astrophysics of the intracluster medium rather than the statistical uncertainty in the measured band powers are the dominant source of uncertainty on σ_8. We also place an upper limit on the kinetic SZ power produced by patchy reionization; a companion paper uses these limits to constrain the reionization history of the universe

    Dynamical Structure of the Molecular Interstellar Medium in an Extremely Bright, Multiply Lensed z ≃ 3 Submillimeter Galaxy Discovered with Herschel

    Get PDF
    We report the detection of CO(J = 5 → 4), CO(J = 3 → 2), and CO(J = 1 → 0) emission in the strongly lensed, Herschel/SPIRE-selected submillimeter galaxy (SMG) HERMES J105751.1+573027 at z = 2.9574 ± 0.0001, using the Plateau de Bure Interferometer, the Combined Array for Research in Millimeter-wave Astronomy, and the Green Bank Telescope. The observations spatially resolve the molecular gas into four lensed images with a maximum separation of ~9" and reveal the internal gas dynamics in this system. We derive lensing-corrected CO line luminosities of L'_(CO(1-0)) = (4.17 ± 0.41), L'_(CO(3-2)) = (3.96 ± 0.20), and L'_(CO(5-4)) = (3.45 ± 0.20) × 10^(10) (μL/10.9)^(–1) K km s^(–1) pc^2, corresponding to luminosity ratios of r_(31) = 0.95 ± 0.10, r_(53) = 0.87 ± 0.06, and r_(51) = 0.83 ± 0.09. This suggests a total molecular gas mass of M_(gas) = 3.3×10^(10) (α_(CO)/0.8) (μ_L/10.9)^(–1) M_☉. The gas mass, gas mass fraction, gas depletion timescale, star formation efficiency, and specific star formation rate are typical for an SMG. The velocity structure of the gas reservoir suggests that the brightest two lensed images are dynamically resolved projections of the same dust-obscured region in the galaxy that are kinematically offset from the unresolved fainter images. The resolved kinematics appear consistent with the complex velocity structure observed in major, "wet" (i.e., gas-rich) mergers. Major mergers are commonly observed in SMGs and are likely to be responsible for fueling their intense starbursts at high gas consumption rates. This study demonstrates the level of detail to which galaxies in the early universe can be studied by utilizing the increase in effective spatial resolution and sensitivity provided by gravitational lensing

    SAMplus: adaptive optics at optical wavelengths for SOAR

    Full text link
    Adaptive Optics (AO) is an innovative technique that substantially improves the optical performance of ground-based telescopes. The SOAR Adaptive Module (SAM) is a laser-assisted AO instrument, designed to compensate ground-layer atmospheric turbulence in near-IR and visible wavelengths over a large Field of View. Here we detail our proposal to upgrade SAM, dubbed SAMplus, that is focused on enhancing its performance in visible wavelengths and increasing the instrument reliability. As an illustration, for a seeing of 0.62 arcsec at 500 nm and a typical turbulence profile, current SAM improves the PSF FWHM to 0.40 arcsec, and with the upgrade we expect to deliver images with a FWHM of ≈0.34\approx0.34 arcsec -- up to 0.23 arcsec FWHM PSF under good seeing conditions. Such capabilities will be fully integrated with the latest SAM instruments, putting SOAR in an unique position as observatory facility.Comment: To appear in Proc. SPIE 10703 (Ground-based and Airborne Instrumentation for Astronomy VII; SPIEastro18

    A Method for Individual Source Brightness Estimation in Single- and Multi-band Data

    Full text link
    We present a method of reliably extracting the flux of individual sources from sky maps in the presence of noise and a source population in which number counts are a steeply falling function of flux. The method is an extension of a standard Bayesian procedure in the millimeter/submillimeter literature. As in the standard method, the prior applied to source flux measurements is derived from an estimate of the source counts as a function of flux, dN/dS. The key feature of the new method is that it enables reliable extraction of properties of individual sources, which previous methods in the literature do not. We first present the method for extracting individual source fluxes from data in a single observing band, then we extend the method to multiple bands, including prior information about the spectral behavior of the source population(s). The multi-band estimation technique is particularly relevant for classifying individual sources into populations according to their spectral behavior. We find that proper treatment of the correlated prior information between observing bands is key to avoiding significant biases in estimations of multi-band fluxes and spectral behavior, biases which lead to significant numbers of misclassified sources. We test the single- and multi-band versions of the method using simulated observations with observing parameters similar to that of the South Pole Telescope data used in Vieira, et al. (2010).Comment: 11 emulateapj pages, 3 figures, revised to match published versio

    Observation of H_2O in a strongly lensed Herschel-ATLAS source at z = 2.3

    Get PDF
    The Herschel survey, H-ATLAS, with its large areal coverage, has recently discovered a number of bright, strongly lensed high-z submillimeter galaxies. The strong magnification makes it possible to study molecular species other than CO, which are otherwise difficult to observe in high-z galaxies. Among the lensed galaxies already identified by H-ATLAS, the source J090302.9-014127B (SDP.17b) at z = 2.305 is remarkable because of its excitation conditions and a tentative detection of the H_2O 2_(02)-1_(11) emission line (Lupu et al. 2010, ApJ, submitted). We report observations of this line in SDP.17b using the IRAM interferometer equipped with its new 277–371 GHz receivers. The H_2O line is detected at a redshift of z = 2.3049 ± 0.0006, with a flux of 7.8 ± 0.5 Jy km s^(-1) and a FWHM of 250 ± 60   km   s^(-1). The new flux is 2.4 times weaker than the previous tentative detection, although both remain marginally consistent within 1.6σ. The intrinsic line luminosity and ratio of H_2O(2_(02) − 1_(11))/CO(8 − 7) are comparable with those of the nearby starburst/enshrouded-AGN Mrk 231, and the ratio I(H_2O)/L_(FIR) is even higher, suggesting that SDP.17b could also host a luminous AGN. The detection of a strong H_2O 2_(02) − 1_(11) line in SDP.17b implies an efficient excitation mechanism of the water levels that must occur in very dense and warm interstellar gas probably similar to Mrk 231

    HerMES: deep number counts at 250 μm, 350 μm and 500 μm in the COSMOS and GOODS-N fields and the build-up of the cosmic infrared background

    Get PDF
    Aims. The Spectral and Photometric Imaging REceiver (SPIRE) onboard the Herschel space telescope has provided confusion limited maps of deep fields at 250 μm, 350 μm, and 500 μm, as part of the Herschel Multi-tiered Extragalactic Survey (HerMES). Unfortunately, due to confusion, only a small fraction of the cosmic infrared background (CIB) can be resolved into individually-detected sources. Our goal is to produce deep galaxy number counts and redshift distributions below the confusion limit at SPIRE wavelengths (~20 mJy), which we then use to place strong constraints on the origins of the cosmic infrared background and on models of galaxy evolution. Methods. We individually extracted the bright SPIRE sources (>20 mJy) in the COSMOS field with a method using the positions, the flux densities, and the redshifts of the 24 μm sources as a prior, and derived the number counts and redshift distributions of the bright SPIRE sources. For fainter SPIRE sources (<20 mJy), we reconstructed the number counts and the redshift distribution below the confusion limit using the deep 24 μm catalogs associated with photometric redshift and information provided by the stacking of these sources into the deep SPIRE maps of the GOODS-N and COSMOS fields. Finally, by integrating all these counts, we studied the contribution of the galaxies to the CIB as a function of their flux density and redshift. Results. Through stacking, we managed to reconstruct the source counts per redshift slice down to ~2 mJy in the three SPIRE bands, which lies about a factor 10 below the 5σ confusion limit. Our measurements place tight constraints on source population models. None of the pre-existing models are able to reproduce our results at better than 3-σ. Finally, we extrapolate our counts to zero flux density in order to derive an estimate of the total contribution of galaxies to the CIB, finding 10.1_(-2.3)^(+2.6) nW m^(-2) sr^(-1), 6.5_(-1.6)^(+1.7) nW m^(-2) sr^(-1), and 2.8_(-0.8)^(+0.9) nW m^(-2) sr^(-1) at 250 μm, 350 μm, and 500 μm, respectively. These values agree well with FIRAS absolute measurements, suggesting our number counts and their extrapolation are sufficient to explain the CIB. We find that half of the CIB is emitted at z = 1.04, 1.20, and 1.25, respectively. Finally, combining our results with other works, we estimate the energy budget contained in the CIB between 8 μm and 1000 μm: 26_(-3)^(+7) nW m^(-2) sr^(-1)

    Manual de interpretação de trilhas: explorando os conceitos de ecologia e conservação de floresta na Reserva do Caju.

    Get PDF
    bitstream/CPATC-2010/20867/1/doc-149.pd

    Redshift Determination and CO Line Excitation Modeling for the Multiply Lensed Galaxy HLSW-01

    Get PDF
    We report on the redshift measurement and CO line excitation of HERMES J105751.1+573027 (HLSW-01), a strongly lensed submillimeter galaxy discovered in Herschel/SPIRE observations as part of the Herschel Multi-tiered Extragalactic Survey (HerMES). HLSW-01 is an ultra-luminous galaxy with an intrinsic far-infrared luminosity of L _(FIR) = 1.4 × 10^(13) L _⊙, and is lensed by a massive group of galaxies into at least four images with a total magnification of μ = 10.9 ± 0.7. With the 100 GHz instantaneous bandwidth of the Z-Spec instrument on the Caltech Submillimeter Observatory, we robustly identify a redshift of z = 2.958 ± 0.007 for this source, using the simultaneous detection of four CO emission lines (J = 7 → 6, J = 8 → 7, J = 9 → 8, and J = 10 → 9). Combining the measured line fluxes for these high-J transitions with the J = 1 → 0, J = 3 → 2, and J = 5 → 4 line fluxes measured with the Green Bank Telescope, the Combined Array for Research in Millimeter Astronomy, and the Plateau de Bure Interferometer, respectively, we model the physical properties of the molecular gas in this galaxy. We find that the full CO spectral line energy distribution is described well by warm, moderate-density gas with T _(kin) = 86-235 K and n_H_2 = (1.1-3.5)x10^3 cm^(–3). However, it is possible that the highest-J transitions are tracing a small fraction of very dense gas in molecular cloud cores, and two-component models that include a warm/dense molecular gas phase with T _(kin) ~ 200 K, n_H_2 ~ 10^5 cm^(–3) are also consistent with these data. Higher signal-to-noise measurements of the J _(up) ≥ 7 transitions with high spectral resolution, combined with high spatial resolution CO maps, are needed to improve our understanding of the gas excitation, morphology, and dynamics of this interesting high-redshift galaxy
    • …
    corecore