3,659 research outputs found

    Apparent and actual galaxy cluster temperatures

    Get PDF
    The redshift evolution of the galaxy cluster temperature function is a powerful probe of cosmology. However, its determination requires the measurement of redshifts for all clusters in a catalogue, which is likely to prove challenging for large catalogues expected from XMM--Newton, which may contain of order 2000 clusters with measurable temperatures distributed around the sky. In this paper we study the apparent cluster temperature, which can be obtained without cluster redshifts. We show that the apparent temperature function itself is of limited use in constraining cosmology, and so concentrate our focus on studying how apparent temperatures can be combined with other X-ray information to constrain the redshift. We also briefly study the circumstances in which non-thermal spectral features can give redshift information.Comment: 7 pages LaTeX file with 13 figures incorporated (uses mn.sty and epsf). Minor changes to match MNRAS accepted versio

    Merging history as a function of halo environment

    Full text link
    According to the hierarchical scenario, galaxies form via merging and accretion of small objects. Using N-body simulations, we study the frequency of merging events in the history of the halos. We find that at z<~2 the merging rate of the overall halo population can be described by a simple power law (1+z)^3. The main emphasis of the paper is on the effects of environment of halos at the present epoch (z=0). We find that the halos located inside clusters have formed earlier (dz \approx 1) than isolated halos of the same mass. At low redshifts (z<1), the merger rate of cluster halos is 3 times lower than that of isolated halos and 2 times lower than merger rate of halos that end up in groups by z=0. At higher redshifts (z~1-4), progenitors of cluster and group halos have 3--5 times higher merger rates than isolated halos. We briefly discuss implications of our results for galaxy evolution in different environments.Comment: submitted to the Astrophys. Journal; 11 pages, 9 figs., LaTeX (uses emulateapj.sty

    Cosmological Simulations of the Preheating Scenario for Galaxy Cluster Formation: Comparison to Analytic Models and Observations

    Full text link
    We perform a set of non--radiative cosmological simulations of a preheated intracluster medium in which the entropy of the gas was uniformly boosted at high redshift. The results of these simulations are used first to test the current analytic techniques of preheating via entropy input in the smooth accretion limit. When the unmodified profile is taken directly from simulations, we find that this model is in excellent agreement with the results of our simulations. This suggests that preheated efficiently smoothes the accreted gas, and therefore a shift in the unmodified profile is a good approximation even with a realistic accretion history. When we examine the simulation results in detail, we do not find strong evidence for entropy amplification, at least for the high-redshift preheating model adopted here. In the second section of the paper, we compare the results of the preheating simulations to recent observations. We show -- in agreement with previous work -- that for a reasonable amount of preheating, a satisfactory match can be found to the mass-temperature and luminosity-temperature relations. However -- as noted by previous authors -- we find that the entropy profiles of the simulated groups are much too flat compared to observations. In particular, while rich clusters converge on the adiabatic self--similar scaling at large radius, no single value of the entropy input during preheating can simultaneously reproduce both the core and outer entropy levels. As a result, we confirm that the simple preheating scenario for galaxy cluster formation, in which entropy is injected universally at high redshift, is inconsistent with observations.Comment: 11 pages, 13 figures, accepted for publication in Ap

    Beyond the Mean Field Approximation for Spin Glasses

    Full text link
    We study the d-dimensional random Ising model using a Bethe-Peierls approximation in the framework of the replica method. We take into account the correct interaction only inside replicated clusters of spins. Our ansatz is that the interaction of the borders of the clusters with the external world can be described via an effective interaction among replicas. The Bethe-Peierls model is mapped into a single Ising model with a random gaussian field, whose strength (related to the effective coupling between two replicas) is determined via a self-consistency equation. This allows us to obtain analytic estimates of the internal energy and of the critical temperature in d dimensions.Comment: plane TeX file,19 pages. 3 figures may be requested to Paladin at axscaq.aquila.infn.i

    A Serendipitous Galaxy Cluster Survey with XMM: Expected Catalogue Properties and Scientific Applications

    Get PDF
    This paper describes a serendipitous galaxy cluster survey that we plan to conduct with the XMM X-ray satellite. We have modeled the expected properties of such a survey for three different cosmological models, using an extended Press-Schechter (Press & Schechter 1974) formalism, combined with a detailed characterization of the expected capabilities of the EPIC camera on board XMM. We estimate that, over the ten year design lifetime of XMM, the EPIC camera will image a total of ~800 square degrees in fields suitable for the serendipitous detection of clusters of galaxies. For the presently-favored low-density model with a cosmological constant, our simulations predict that this survey area would yield a catalogue of more than 8000 clusters, ranging from poor to very rich systems, with around 750 detections above z=1. A low-density open Universe yields similar numbers, though with a different redshift distribution, while a critical-density Universe gives considerably fewer clusters. This dependence of catalogue properties on cosmology means that the proposed survey will place strong constraints on the values of Omega-Matter and Omega-Lambda. The survey would also facilitate a variety of follow-up projects, including the quantification of evolution in the cluster X-ray luminosity-temperature relation, the study of high-redshift galaxies via gravitational lensing, follow-up observations of the Sunyaev-Zel'dovich effect and foreground analyses of cosmic microwave background maps.Comment: Accepted to ApJ. Minor changes, e.g. presentation of temperature errors as a figure (rather than as a table). Latex (20 pages, 6 figures, uses emulateapj.sty
    corecore