3,861 research outputs found
Mass-Temperature Relation of Galaxy Clusters: A Theoretical Study
Combining conservation of energy throughout nearly-spherical collapse of
galaxy clusters with the virial theorem, we derive the mass-temperature
relation for X-ray clusters of galaxies . The normalization factor
and the scatter of the relation are determined from first principles with
the additional assumption of initial Gaussian random field. We are also able to
reproduce the recently observed break in the M-T relation at T \sim 3 \keV,
based on the scatter in the underlying density field for a low density
CDM cosmology. Finally, by combining observational data of high
redshift clusters with our theoretical formalism, we find a semi-empirical
temperature-mass relation which is expected to hold at redshifts up to unity
with less than 20% error.Comment: 43 pages, 13 figures, One figure is added and minor changes are made.
Accepted for Publication in Ap
Cosmological Implications of the Fundamental Relations of X-ray Clusters
Based on the two-parameter family nature of X-ray clusters of galaxies
obtained in a separate paper, we discuss the formation history of clusters and
cosmological parameters of the universe. Utilizing the spherical collapse model
of cluster formation, and assuming that the cluster X-ray core radius is
proportional to the virial radius at the time of the cluster collapse, the
observed relations among the density, radius, and temperature of clusters imply
that cluster formation occurs in a wide range of redshift. The observed
relations favor the low-density universe. Moreover, we find that the model of
is preferable.Comment: 7 pages, 4 figures. To be published in ApJ Letter
Effective transport barriers in nontwist systems
In fluids and plasmas with zonal flow reversed shear, a peculiar kind of transport barrier appears in the shearless region, one that is associated with a proper route of transition to chaos. These barriers have been identified in symplectic nontwist maps that model such zonal flows. We use the so-called standard nontwist map, a paradigmatic example of nontwist systems, to analyze the parameter dependence of the transport through a broken shearless barrier. On varying a proper control parameter, we identify the onset of structures with high stickiness that give rise to an effective barrier near the broken shearless curve. Moreover, we show how these stickiness structures, and the concomitant transport reduction in the shearless region, are determined by a homoclinic tangle of the remaining dominant twin island chains. We use the finite-time rotation number, a recently proposed diagnostic, to identify transport barriers that separate different regions of stickiness. The identified barriers are comparable to those obtained by using finite-time Lyapunov exponents.FAPESPCNPqCAPESMCT/CNEN (Rede Nacional de Fusao)Fundacao AraucariaUS Department of Energy DE-FG05-80ET-53088Physic
Ionization rates in a Bose-Einstein condensate of metastable Helium
We have studied ionizing collisions in a BEC of He*. Measurements of the ion
production rate combined with measurements of the density and number of atoms
for the same sample allow us to estimate both the 2 and 3-body contributions to
this rate. A comparison with the decay of the number of condensed atoms in our
magnetic trap, in the presence of an rf-shield, indicates that ionizing
collisions are largely or wholly responsible for the loss. Quantum depletion
makes a substantial correction to the 3-body rate constant.Comment: 4 pages, 3 figure
Weak Lensing as a Calibrator of the Cluster Mass-Temperature Relation
The abundance of clusters at the present epoch and weak gravitational lensing
shear both constrain roughly the same combination of the power spectrum
normalization sigma_8 and matter energy density Omega_M. The cluster constraint
further depends on the normalization of the mass-temperature relation.
Therefore, combining the weak lensing and cluster abundance data can be used to
accurately calibrate the mass-temperature relation. We discuss this approach
and illustrate it using data from recent surveys.Comment: Matches the version in ApJL. Equation 4 corrected. Improvements in
the analysis move the cluster contours in Fig1 slightly upwards. No changes
in the conclusion
Infinitely Many Stochastically Stable Attractors
Let f be a diffeomorphism of a compact finite dimensional boundaryless
manifold M exhibiting infinitely many coexisting attractors. Assume that each
attractor supports a stochastically stable probability measure and that the
union of the basins of attraction of each attractor covers Lebesgue almost all
points of M. We prove that the time averages of almost all orbits under random
perturbations are given by a finite number of probability measures. Moreover
these probability measures are close to the probability measures supported by
the attractors when the perturbations are close to the original map f.Comment: 14 pages, 2 figure
Getting the elastic scattering length by observing inelastic collisions in ultracold metastable helium atoms
We report an experiment measuring simultaneously the temperatureand the flux
of ions produced by a cloud of triplet metastablehelium atoms at the
Bose-Einstein critical temperature. The onsetof condensation is revealed by a
sharp increase of the ion fluxduring evaporative cooling. Combining our
measurements withprevious measurements of ionization in a pure BEC,we extract
an improved value of the scattering length nm. The analysis
includes corrections takinginto accountthe effect of atomic interactions on the
criticaltemperature, and thus an independent measurement of the
scatteringlength would allow a new test of these calculations
Normalization procedure for relaxation studies in NMR quantum information processing
NMR quantum information processing studies rely on the reconstruction of the
density matrix representing the so-called pseudo-pure states (PPS). An
initially pure part of a PPS state undergoes unitary and non-unitary
(relaxation) transformations during a computation process, causing a "loss of
purity" until the equilibrium is reached. Besides, upon relaxation, the nuclear
polarization varies in time, a fact which must be taken into account when
comparing density matrices at different instants. Attempting to use time-fixed
normalization procedures when relaxation is present, leads to various anomalies
on matrices populations. On this paper we propose a method which takes into
account the time-dependence of the normalization factor. From a generic form
for the deviation density matrix an expression for the relaxing initial pure
state is deduced. The method is exemplified with an experiment of relaxation of
the concurrence of a pseudo-entangled state, which exhibits the phenomenon of
sudden death, and the relaxation of the Wigner function of a pseudo-cat state.Comment: 9 pages, 5 figures, to appear in QI
- …