55 research outputs found
Diversity arrays technology (DArT) markers in apple for genetic linkage maps
Diversity Arrays Technology (DArT) provides a high-throughput whole-genome genotyping platform for the detection and scoring of hundreds of polymorphic loci without any need for prior sequence information. The work presented here details the development and performance of a DArT genotyping array for apple. This is the first paper on DArT in horticultural trees. Genetic mapping of DArT markers in two mapping populations and their integration with other marker types showed that DArT is a powerful high-throughput method for obtaining accurate and reproducible marker data, despite the low cost per data point. This method appears to be suitable for aligning the genetic maps of different segregating populations. The standard complexity reduction method, based on the methylation-sensitive PstI restriction enzyme, resulted in a high frequency of markers, although there was 52–54% redundancy due to the repeated sampling of highly similar sequences. Sequencing of the marker clones showed that they are significantly enriched for low-copy, genic regions. The genome coverage using the standard method was 55–76%. For improved genome coverage, an alternative complexity reduction method was examined, which resulted in less redundancy and additional segregating markers. The DArT markers proved to be of high quality and were very suitable for genetic mapping at low cost for the apple, providing moderate genome coverage
Functional analysis and expression profiling of HcrVf1 and HcrVf2 for development of scab resistant cisgenic and intragenic apples
Apple scab resistance genes, HcrVf1 and HcrVf2, were isolated including their native promoter, coding and terminator sequences. Two fragment lengths (short and long) of the native gene promoters and the strong apple rubisco gene promoter (PMdRbc) were used for both HcrVf genes to test their effect on expression and phenotype. The scab susceptible cultivar ‘Gala’ was used for plant transformations and after selection of transformants, they were micrografted onto apple seedling rootstocks for scab disease tests. Apple transformants were also tested for HcrVf expression by quantitative RT-PCR (qRT-PCR). For HcrVf1 the long native promoter gave significantly higher expression that the short one; in case of HcrVf2 the difference between the two was not significant. The apple rubisco gene promoter proved to give the highest expression of both HcrVf1 and HcrVf2. The top four expanding leaves were used initially for inoculation with monoconidial isolate EU-B05 which belongs to race 1 of V. inaequalis. Later six other V. inaequalis isolates were used to study the resistance spectra of the individual HcrVf genes. The scab disease assays showed that HcrVf1 did not give resistance against any of the isolates tested regardless of the expression level. The HcrVf2 gene appeared to be the only functional gene for resistance against Vf avirulent isolates of V. inaequalis. HcrVf2 did not provide any resistance to Vf virulent strains, even not in case of overexpression. In conclusion, transformants carrying the apple-derived HcrVf2 gene in a cisgenic as well as in an intragenic configuration were able to reach scab resistance levels comparable to the Vf resistant control cultivar obtained by classical breeding, cv. ‘Santana’
Genomic Selection for Fruit Quality Traits in Apple (Malus×domestica Borkh.)
The genome sequence of apple (Malus×domestica Borkh.) was published more than a year ago, which helped develop an 8K SNP chip to assist in implementing genomic selection (GS). In apple breeding programmes, GS can be used to obtain genomic breeding values (GEBV) for choosing next-generation parents or selections for further testing as potential commercial cultivars at a very early stage. Thus GS has the potential to accelerate breeding efficiency significantly because of decreased generation interval or increased selection intensity. We evaluated the accuracy of GS in a population of 1120 seedlings generated from a factorial mating design of four females and two male parents. All seedlings were genotyped using an Illumina Infinium chip comprising 8,000 single nucleotide polymorphisms (SNPs), and were phenotyped for various fruit quality traits. Random-regression best liner unbiased prediction (RR-BLUP) and the Bayesian LASSO method were used to obtain GEBV, and compared using a cross-validation approach for their accuracy to predict unobserved BLUP-BV. Accuracies were very similar for both methods, varying from 0.70 to 0.90 for various fruit quality traits. The selection response per unit time using GS compared with the traditional BLUP-based selection were very high (>100%) especially for low-heritability traits. Genome-wide average estimated linkage disequilibrium (LD) between adjacent SNPs was 0.32, with a relatively slow decay of LD in the long range (r2 = 0.33 and 0.19 at 100 kb and 1,000 kb respectively), contributing to the higher accuracy of GS. Distribution of estimated SNP effects revealed involvement of large effect genes with likely pleiotropic effects. These results demonstrated that genomic selection is a credible alternative to conventional selection for fruit quality traits
Genome mapping of an apple scab, a powdery mildew and a woolly apple aphid resistance gene from open-pollinated Mildew Immune Selection
Apple is host to a wide range of pests and diseases, with several of these, such as apple scab, powdery mildew and woolly apple aphid, being major causes of damage in most areas around the world. Resistance breeding is an effective way of controlling pests and diseases, provided that the resistance is durable. As the gene pyramiding strategy for increasing durability requires a sufficient supply of resistance genes with different modes of action, the identification and mapping of new resistance genes is an ongoing process in breeding. In this paper, we describe the mapping of an apple scab, a powdery mildew and a woolly apple aphid gene from progeny of open-pollinated mildew immune selection. The scab resistance gene Rvi16 was identified in progeny 93.051 G07-098 and mapped to linkage group 3 of apple. The mildew and woolly aphid genes were identified in accession 93.051 G02-054. The woolly aphid resistance gene Er4 mapped to linkage group 7 to a region close to where previously the genes Sd1 and Sd2, for resistance to the rosy apple leaf-curling aphid, had been mapped. The mildew resistance gene Pl-m mapped to the same region on linkage group 11 where Pl2 had been mapped previously. Flanking markers useful for marker-assisted selection have been identified for each gene. © 2010 Springer-Verlag
- …