35 research outputs found

    Systemic IL-12 Administration Alters Hepatic Dendritic Cell Stimulation Capabilities

    Get PDF
    The liver is an immunologically unique organ containing tolerogenic dendritic cells (DC) that maintain an immunosuppressive microenvironment. Although systemic IL-12 administration can improve responses to tumors, the effects of IL-12-based treatments on DC, in particular hepatic DC, remain incompletely understood. In this study, we demonstrate systemic IL-12 administration induces a 2–3 fold increase in conventional, but not plasmacytoid, DC subsets in the liver. Following IL-12 administration, hepatic DC became more phenotypically and functionally mature, resembling the function of splenic DC, but differed as compared to their splenic counterparts in the production of IL-12 following co-stimulation with toll-like receptor (TLR) agonists. Hepatic DCs from IL-12 treated mice acquired enhanced T cell proliferative capabilities similar to levels observed using splenic DCs. Furthermore, IL-12 administration preferentially increased hepatic T cell activation and IFNγ expression in the RENCA mouse model of renal cell carcinoma. Collectively, the data shows systemic IL-12 administration enables hepatic DCs to overcome at least some aspects of the inherently suppressive milieu of the hepatic environment that could have important implications for the design of IL-12-based immunotherapeutic strategies targeting hepatic malignancies and infections

    An In Situ Autologous Tumor Vaccination with Combined Radiation Therapy and TLR9 Agonist Therapy

    Get PDF
    PURPOSE:Recent studies have shown that a new generation of synthetic agonist of Toll-like receptor (TLR) 9 consisting a 3'-3'-attached structure and a dCp7-deaza-dG dinucultodie shows more potent immunostimulatory effects in both mouse and human than conventional CpG oligonucleotides. Radiation therapy (RT) provides a source of tumor antigens that are released from dying, irradiated, tumor cells without causing systemic immunosuppression. We, therefore, examined effect of combining RT with a designer synthetic agonist of TLR9 on anti-tumoral immunity, primary tumor growth retardation and metastases in a murine model of lung cancer. METHODS:Grouped C57BL/6 and congenic B cell deficient mice (B(-/-)) bearing footpad 3LL tumors were treated with PBS, TLR9 agonist, control oligonucelotide, RT or the combination of RT and TLR9 agonist. Immune phenotype of splenocytes and serum IFN-γ and IL-10 levels were analyzed by FACS and ELISA, 24 h after treatment. Tumor growth, lung metastases and survival rate were monitored and tumor specific antibodies in serum and deposition in tumor tissue were measured by ELISA and immunofluorescence. RESULTS:TLR9 agonist expanded and activated B cells and plasmacytoid dendritic cells in wild-type mice and natural killer DCs (NKDCs) in B cell-deficient (B(-/-)) mice bearing ectopic Lewis lung adenocarcinoma (3LL). Combined RT with TLR9 agonist treatment inhibited 3LL tumor growth in both wild type and B(-/-) mice. A strong tumor-specific humoral immune response (titer: 1/3200) with deposition of mouse IgG auto-antibodies in tumor tissue were found in wildtype mice, whereas the number of tumor infiltrating NKDCs increased in B(-/-) mice following RT+ TLR9 agonist therapy. Furthermore, mice receiving combination therapy had fewer lung metastases and a higher survival than single treatment cohorts. CONCLUSIONS:Combination therapy with TLR9 agonist and RT induces systemic anti-tumoral humoral response, augments tumoral infiltration of NKDCs, reduces pulmonary metastases and improves survival in a murine model of 3LL cancer

    In vivo migration of labeled autologous natural killer cells to liver metastases in patients with colon carcinoma

    Get PDF
    BACKGROUND: Besides being the effectors of native anti-tumor cytotoxicity, NK cells participate in T-lymphocyte responses by promoting the maturation of dendritic cells (DC). Adherent NK (A-NK) cells constitute a subset of IL-2-stimulated NK cells which show increased expression of integrins and the ability to adhere to solid surface and to migrate, infiltrate, and destroy cancer. A critical issue in therapy of metastatic disease is the optimization of NK cell migration to tumor tissues and their persistence therein. This study compares localization to liver metastases of autologous A-NK cells administered via the systemic (intravenous, i.v.) versus locoregional (intraarterial, i.a.) routes. PATIENTS AND METHODS: A-NK cells expanded ex-vivo with IL-2 and labeled with (111)In-oxine were injected i.a. in the liver of three colon carcinoma patients. After 30 days, each patient had a new preparation of (111)In-A-NK cells injected i.v. Migration of these cells to various organs was evaluated by SPET and their differential localization to normal and neoplastic liver was demonstrated after i.v. injection of (99m)Tc-phytate. RESULTS: A-NK cells expressed a donor-dependent CD56(+)CD16(+)CD3(- )(NK) or CD56(+)CD16(+)CD3(+ )(NKT) phenotype. When injected i.v., these cells localized to the lung before being visible in the spleen and liver. By contrast, localization of i.a. injected A-NK cells was virtually confined to the spleen and liver. Binding of A-NK cells to liver neoplastic tissues was observed only after i.a. injections. CONCLUSION: This unique study design demonstrates that A-NK cells adoptively transferred to the liver via the intraarterial route have preferential access and substantial accumulation to the tumor site

    Immunization with Radiation-Attenuated Plasmodium berghei Sporozoites Induces Liver cCD8α+DC that Activate CD8+T Cells against Liver-Stage Malaria

    Get PDF
    Immunization with radiation (γ)-attenuated Plasmodia sporozoites (γ-spz) confers sterile and long-lasting immunity against malaria liver-stage infection. In the P. berghei γ-spz model, protection is linked to liver CD8+ T cells that express an effector/memory (TEM) phenotype, (CD44hiCD45RBloCD62Llo ), and produce IFN-γ. However, neither the antigen presenting cells (APC) that activate these CD8+ TEM cells nor the site of their induction have been fully investigated. Because conventional (c)CD8α+ DC (a subset of CD11c+ DC) are considered the major inducers of CD8+ T cells, in this study we focused primarily on cCD8α+ DC from livers of mice immunized with Pb γ-spz and asked whether the cCD8α+ DC might be involved in the activation of CD8+ TEM cells. We demonstrate that multiple exposures of mice to Pb γ-spz lead to a progressive and nearly concurrent accumulation in the liver but not the spleen of both the CD11c+NK1.1− DC and CD8+ TEM cells. Upon adoptive transfer, liver CD11c+NK1.1− DC from Pb γ-spz-immunized mice induced protective immunity against sporozoite challenge. Moreover, in an in vitro system, liver cCD8α+ DC induced naïve CD8+ T cells to express the CD8+ TEM phenotype and to secrete IFN-γ. The in vitro induction of functional CD8+ TEM cells by cCD8α+ DC was inhibited by anti-MHC class I and anti-IL-12 mAbs. These data suggest that liver cCD8α+ DC present liver-stage antigens to activate CD8+ TEM cells, the pre-eminent effectors against pre-erythrocytic malaria. These results provide important implications towards a design of anti-malaria vaccines

    Diagnóstico, tratamento e seguimento do carcinoma medular de tireoide: recomendações do Departamento de Tireoide da Sociedade Brasileira de Endocrinologia e Metabologia

    Full text link

    γδ T cells support pancreatic oncogenesis by restraining αβ T cell activation.

    No full text
    Inflammation is paramount in pancreatic oncogenesis. We identified a uniquely activated γδT cell population, which constituted ~40% of tumor-infiltrating T cells in human pancreatic ductal adenocarcinoma (PDA). Recruitment and activation of γδT cells was contingent on diverse chemokine signals. Deletion, depletion, or blockade of γδT cell recruitment was protective against PDA and resulted in increased infiltration, activation, and Th1 polarization of αβT cells. Although αβT cells were dispensable to outcome in PDA, they became indispensable mediators of tumor protection upon γδT cell ablation. PDA-infiltrating γδT cells expressed high levels of exhaustion ligands and thereby negated adaptive anti-tumor immunity. Blockade of PD-L1 in γδT cells enhanced CD4+ and CD8+ T cell infiltration and immunogenicity and induced tumor protection suggesting that γδT cells are critical sources of immune-suppressive checkpoint ligands in PDA. We describe γδT cells as central regulators of effector T cell activation in cancer via novel cross-talk

    γδ T cells support pancreatic oncogenesis by restraining αβ T cell activation.

    No full text
    Inflammation is paramount in pancreatic oncogenesis. We identified a uniquely activated γδT cell population, which constituted ~40% of tumor-infiltrating T cells in human pancreatic ductal adenocarcinoma (PDA). Recruitment and activation of γδT cells was contingent on diverse chemokine signals. Deletion, depletion, or blockade of γδT cell recruitment was protective against PDA and resulted in increased infiltration, activation, and Th1 polarization of αβT cells. Although αβT cells were dispensable to outcome in PDA, they became indispensable mediators of tumor protection upon γδT cell ablation. PDA-infiltrating γδT cells expressed high levels of exhaustion ligands and thereby negated adaptive anti-tumor immunity. Blockade of PD-L1 in γδT cells enhanced CD4+ and CD8+ T cell infiltration and immunogenicity and induced tumor protection suggesting that γδT cells are critical sources of immune-suppressive checkpoint ligands in PDA. We describe γδT cells as central regulators of effector T cell activation in cancer via novel cross-talk

    IL-15 mediated expansion of rare durable memory T cells following adoptive cellular therapy.

    No full text
    Background Synovial sarcoma (SS) and myxoid/round cell liposarcoma (MRCL) are ideal solid tumors for the development of adoptive cellular therapy (ACT) targeting NY-ESO-1, as a high frequency of tumors homogeneously express this cancer-testes antigen. Data from early phase clinical trials have shown antitumor activity after the adoptive transfer of NY-ESO-1-specific T cells. In these studies, persistence of NY-ESO-1 specific T cells is highly correlated with response to ACT, but patients often continue to have detectable transferred cells in their peripheral blood following progression.Method We performed a phase I clinical trial evaluating the safety of NY-ESO-1-specific endogenous T cells (ETC) following cyclophosphamide conditioning. Peripheral blood mononuclear cells (PBMCs) from treated patients were evaluated by flow cytometry and gene expression analysis as well as through ex vivo culture assays with and without IL-15.Results Four patients were treated in a cohort using ETC targeting NY-ESO-1 following cyclophosphamide conditioning. Treatment was well tolerated without significant toxicity, but all patients ultimately had disease progression. In two of four patients, we obtained post-treatment tumor tissue and in both, NY-ESO-1 antigen was retained despite clear detectable persisting NY-ESO-1-specific T cells in the peripheral blood. Despite a memory phenotype, these persisting cells lacked markers of proliferation or activation. However, in ex vivo culture assays, they could be induced to proliferate and kill tumor using IL-15. These results were also seen in PBMCs from two patients who received gene-engineered T-cell receptor-based products at other centers.Conclusions ETC targeting NY-ESO-1 with single-agent cyclophosphamide alone conditioning was well tolerated in patients with SS and those with MRCL. IL-15 can induce proliferation and activity in persisting NY-ESO-1-specific T cells even in patients with disease progression following ACT. These results support future work evaluating whether IL-15 could be incorporated into ACT trials post-infusion or at the time of progression

    Antigen processing and CD24 expression determine antigen presentation by splenic CD4+ and CD8+ dendritic cells

    No full text
    To examine heterogeneity in dendritic cell (DC) antigen presentation function, murine splenic DCs were separated into CD4+ and CD8+ populations and assessed for the ability to process and present particulate antigen to CD4+ and CD8+ T cells. CD4+ and CD8+ DCs both processed exogenous particulate antigen, but CD8+ DCs were much more efficient than CD4+ DCs for both major histocompatibility complex (MHC) class II antigen presentation and MHC class I cross-presentation. While antigen processing efficiency contributed to the superior antigen presentation function of CD8+ DCs, our studies also revealed an important contribution of CD24. CD8+ DCs were also more efficient than CD4+ DCs in inducing naïve T cells to acquire certain effector T-cell functions, for example generation of cytotoxic CD8+ T cells and interferon (IFN)-γ-producing CD4+ T cells. In summary, CD8+ DCs are particularly potent antigen-presenting cells that express critical costimulators and efficiently process exogenous antigen for presentation by both MHC class I and II molecules
    corecore