75 research outputs found
Dynamics of the chiral phase transition from AdS/CFT duality
We use Lorentzian signature AdS/CFT duality to study a first order phase
transition in strongly coupled gauge theories which is akin to the chiral phase
transition in QCD. We discuss the relation between the latent heat and the
energy (suitably defined) of the component of a D-brane which lies behind the
horizon at the critical temperature. A numerical simulation of a dynamical
phase transition in an expanding, cooling Quark-Gluon plasma produced in a
relativistic collision is carried out.Comment: 30 pages, 5 figure
D3/D7 Quark-Gluon Plasma with Magnetically Induced Anisotropy
We study the effects of the temperature and of a magnetic field in the setup
of an intersection of D3/D7 branes, where a large number of D7 branes is
smeared in the transverse directions to allow for a perturbative solution in a
backreaction parameter. The magnetic field sources an anisotropy in the plasma,
and we investigate its physical consequences for the thermodynamics and energy
loss of particles probing the system. In particular we comment on the
stress-energy tensor of the plasma, the propagation of sound in the directions
parallel and orthogonal to the magnetic field, the drag force of a quark moving
through the medium and jet quenching.Comment: 29 pages + appendices, 5 figures. v2 Version to appear in JHEP, with
  minor revisions, references added and typos correcte
Flavor-symmetry Breaking with Charged Probes
We discuss the recombination of brane/anti-brane pairs carrying  brane
charge in . These configurations are dual to co-dimension one
defects in the  super-Yang-Mills description. Due to their 
charge, these defects are actually domain walls in the dual gauge theory,
interpolating between vacua of different gauge symmetry. A pair of unjoined
defects each carry localized  dimensional fermions and possess a global
 flavor symmetry while the recombined brane/anti-brane pairs
exhibit only a diagonal U(N). We study the thermodynamics of this
flavor-symmetry breaking under the influence of external magnetic field.Comment: 21 pages, 10 figure
Sum rules, plasma frequencies and Hall phenomenology in holographic plasmas
We study the AC optical and hall conductivities of Dp/Dq-branes intersections
in the probe approximation and use sum-rules to study various associated
transport coefficients. We determine that the presence of massive fundamental
matter, as compared to massless fundamental matter described holographically by
a theory with no dimensional defects, reduces the plasma frequency. We further
show that this is not the case when the brane intersections include defects. We
discuss in detail how to implement correctly the regularization of retarded
Green's functions so that the dispersion relations are satisfied and the low
energy behaviour of the system is physically realistic.Comment: 25 pages, 5 figures. v2.minor changes, published versio
Holography of a Composite Inflaton
We study the time evolution of a brane construction that is holographically
dual to a strongly coupled gauge theory that dynamically breaks a global
symmetry through the generation of an effective composite Higgs vev. The D3/D7
system with a background magnetic field or non-trivial gauge coupling (dilaton)
profile displays the symmetry breaking. We study motion of the D7 brane in the
background of the D3 branes. For small field inflation in the field theory the
effective Higgs vev rolls from zero to the true vacuum value. We study what
phenomenological dilaton profile generates the slow rolling needed, hence
learning how the strongly coupled gauge theory's coupling must run. We note
that evolution of our configuration in the holographic direction, representing
the phyiscs of the strong interactions, can provide additional slowing of the
roll time. Inflation seems to be favoured if the coupling changes by only a
small amount or very gently. We speculate on how such a scenario could be
realized away from N=4 gauge theory, for example, in a walking gauge theory.Comment: 13 pages, 12 figures; v2: Added reference
Mesons from global Anti-de Sitter space
In the context of gauge/gravity duality, we study both probe D7-- and probe
D5--branes in global Anti-de Sitter space. The dual field theory is N=4 theory
on R x S^3 with added flavour. The branes undergo a geometrical phase
transition in this geometry as function of the bare quark mass m_q in units of
1/R with R the S^3 radius. The meson spectra are obtained from fluctuations of
the brane probes. First, we study them numerically for finite quark mass
through the phase transition. Moreover, at zero quark mass we calculate the
meson spectra analytically both in supergravity and in free field theory on R x
S^3 and find that the results match: For the chiral primaries, the lowest level
is given by the zero point energy or by the scaling dimension of the operator
corresponding to the fluctuations, respectively. The higher levels are
equidistant. Similar results apply to the descendents. Our results confirm the
physical interpretation that the mesons cannot pair-produce any further when
their zero-point energy exceeds their binding energy.Comment: 43 pages, 8 figures, references edited, few typos corrected, updated
  to match the published versio
Inverse magnetic catalysis in dense holographic matter
We study the chiral phase transition in a magnetic field at finite
temperature and chemical potential within the Sakai-Sugimoto model, a
holographic top-down approach to (large-N_c) QCD. We consider the limit of a
small separation of the flavor D8-branes, which corresponds to a dual field
theory comparable to a Nambu-Jona Lasinio (NJL) model. Mapping out the surface
of the chiral phase transition in the parameter space of magnetic field
strength, quark chemical potential, and temperature, we find that for small
temperatures the addition of a magnetic field decreases the critical chemical
potential for chiral symmetry restoration - in contrast to the case of
vanishing chemical potential where, in accordance with the familiar phenomenon
of magnetic catalysis, the magnetic field favors the chirally broken phase.
This "inverse magnetic catalysis" (IMC) appears to be associated with a
previously found magnetic phase transition within the chirally symmetric phase
that shows an intriguing similarity to a transition into the lowest Landau
level. We estimate IMC to persist up to 10^{19} G at low temperatures.Comment: 42 pages, 11 figures, v3: extended discussion; new appendix D;
  references added; version to appear in JHE
Chiral Symmetry Breaking and External Fields in the Kuperstein-Sonnenschein Model
A novel holographic model of chiral symmetry breaking has been proposed by
Kuperstein and Sonnenschein by embedding non-supersymmetric probe D7 and
anti-D7 branes in the Klebanov-Witten background. We study the dynamics of the
probe flavours in this model in the presence of finite temperature and a
constant electromagnetic field. In keeping with the weakly coupled field theory
intuition, we find the magnetic field promotes spontaneous breaking of chiral
symmetry whereas the electric field restores it. The former effect is
universally known as the "magnetic catalysis" in chiral symmetry breaking. In
the presence of an electric field such a condensation is inhibited and a
current flows. Thus we are faced with a steady-state situation rather than a
system in equilibrium. We conjecture a definition of thermodynamic free energy
for this steady-state phase and using this proposal we study the detailed phase
structure when both electric and magnetic fields are present in two
representative configurations: mutually perpendicular and parallel.Comment: 50 pages, multiple figures, minor typo fixed, references adde
Thermodynamics of Holographic Defects
Using the AdS/CFT correspondence, we study the thermodynamic properties and
the phase diagram of matter fields on (2+1)-dimensional defects coupled to a
(3+1)-dimensional N=4 SYM "heat bath". Considering a background magnetic field,
(net) quark density, defect "magnitude"  and the mass of the
matter, we study the defect contribution to the thermodynamic potentials and
their first and second derivatives to map the phases and study their physical
properties.
  We find some features that are qualitatively similar to other systems e.g. in
(3+1) dimensions and a number of features that are particular to the defect
nature, such as its magnetic properties, unexpected properties at T->0 and
finite density; and the finite  effects, e.g. a diverging
susceptibility and vanishing density of states at small temperatures, a
physically consistent negative heat capacity and new types of consistent
phases.Comment: 33 pages, 16 figures (jpg and pdf), typos fixed and references added,
  final version published in JHE
- …
