47 research outputs found

    Investigating off-Hugoniot states using multi-layer ring-up targets

    Get PDF
    Laser compression has long been used as a method to study solids at high pressure. This is commonly achieved by sandwiching a sample between two diamond anvils and using a ramped laser pulse to slowly compress the sample, while keeping it cool enough to stay below the melt curve. We demonstrate a different approach, using a multilayer ā€˜ring upā€™ target whereby laser-ablation pressure compresses Pb up to 150 GPa while keeping it solid, over two times as high in pressure than where it would shock melt on the Hugoniot. We find that the efficiency of this approach compares favourably with the commonly used diamond sandwich technique and could be important for new facilities located at XFELs and synchrotrons which often have higher repetition rate, lower energy lasers which limits the achievable pressures that can be reached

    Passive nonlinear targeted energy transfer

    No full text

    Advanced Materials Treatment by Shock Waves

    No full text

    Shear Localization and Shear Bands Patterning in Heterogeneous Materials

    No full text

    Major Steps in the Discovery of Adiabatic Shear Bands

    No full text
    The standard story of the discovery of adiabatic shear bands is that it began with the American researchers Zener and Hollomon's famous 1944 paper where the phenomenon was first reported and named. However, a recent discovery by one of us (SMW) in the Cambridge University Library has shown that the phenomenon was discovered and described by a Russian researcher, V.P. Kravz-Tarnavskii, in 1928. A follow-up paper was published by two of his colleagues in 1935. Translations of the 1928 and 1935 papers may be found at http://arxiv.org/abs/1410.1353. (C) The Minerals, Metals & Materials Society and ASM International 201

    Mesomechanics of Porous Materials Under Intense Dynamic Loading

    No full text
    corecore