69 research outputs found

    Mechanical characterisation of lacustrine clay by interpreting spatial variability in CPTU measurements

    Get PDF
    Transportation infrastructure is common in highly populated areas near the major lakes in the Swiss 'Mittelland', where extensive deposits of normally consolidated post glacial clays have formed. Construction on, or in, such soils requires careful consideration during the design process due to their compressibility, low permeability and sensitivity. Achieving a satisfactory engineering characterisation requires a range of field and laboratory tests, which may be evaluated using statistical tools. The Intraclass ratio RI and the modified Bartlett method have been employed for interpreting the variability of the undrained shear strength su from continuous CPTU measurements at the Wauwil site. Finally, comparison between measurements from two cone dimensions, of cross sectional areas of 10 cm2 and 5 cm2, has been undertaken with respect to their capacity of profile detailing based on the normalised cone penetration resistanc

    A numerical approach for liquefaction potential definition

    Get PDF
    Liquefaction phenomenon in saturated granular soil is not that frequent as amplification cases but can cause heavy damages on buildings and infrastructures whenever is occurs especially within superficial strata. In fact the lack of shear resistance of soil due to liquefaction affects mostly shallow foundations and road surfaces. Up now, several studies have been addressed to overpass the inadequacy of liquefaction safety factor by means of introducing the liquefaction potential. Nevertheless, the difficulty in (1) defining a scale of damage related to liquefaction potential values and (2) collecting field data from damages caused prevalently by liquefaction makes the punctual factor of safety still popular in engineering practice. In this paper a new approach to liquefaction potential estimation is proposed based on finite element dynamic analyses and on the concept of “significant volume” according to possible effects suffered by shallow foundations. One-dimensional simulation of liquefaction occurrence is performed by means of the Pastor-Zienkiewicz constitutive law. Hence the estimation of liquefaction potential is gained as well as the stress influence factor from Westergaard solution is calculated

    Automated reconstruction of rainfall events responsible for shallow landslides

    Get PDF
    Abstract. Over the last 40 years, many contributions have identified empirical rainfall thresholds (e.g. rainfall intensity (I) vs. rainfall duration (D), cumulated rainfall vs. rainfall duration (ED), cumulated rainfall vs. rainfall intensity (EI)) for the possible initiation of shallow landslides, based on local and global inventories. Although different methods to trace the threshold curves have been proposed and discussed in literature, a systematic study to develop an automated procedure to select the rainfall event responsible for the landslide occurrence has only rarely been addressed. Objective criteria for estimating the rainfall responsible for the landslide occurrence play a prominent role on the threshold values. In this paper, two criteria for the identification of the effective rainfall events are presented. The first criterion is based on the analysis of the time series of rainfall mean intensity values over 1 month preceding the landslide occurrence. The second criterion is based on the analysis of the trend in the time function of the cumulated mean intensity series calculated from the rainfall records measured through rain gauges. The two criteria have been implemented in an automated procedure that is written in the R language. A sample of 100 shallow landslides collected in Italy from 2002 to 2012 was used to calibrate the procedure. The cumulated event rainfall (E) and duration (D) of rainfall events that triggered the documented landslides are calculated through the new procedure and are fitted with power law in the D, E diagram. The results are discussed by comparing the D, E pairs calculated by the automated procedure and the ones by the expert method

    Automated reconstruction of rainfall events responsible for shallow landslides

    Get PDF
    Over the last 40 years, many contributions have identified empirical rainfall thresholds (e.g. rainfall intensity (I ) vs. rainfall duration (D), cumulated rainfall vs. rainfall duration (ED), cumulated rainfall vs. rainfall intensity (EI)) for the possible initiation of shallow landslides, based on local and global inventories. Although different methods to trace the threshold curves have been proposed and discussed in literature, a systematic study to develop an automated procedure to select the rainfall event responsible for the landslide occurrence has only rarely been addressed. Objective criteria for estimating the rainfall responsible for the landslide occurrence play a prominent role on the threshold values. In this paper, two criteria for the identification of the effective rainfall events are presented. The first criterion is based on the analysis of the time series of rainfall mean intensity values over 1 month preceding the landslide occurrence. The second criterion is based on the analysis of the trend in the time function of the cumulated mean intensity series calculated from the rainfall records measured through rain gauges. The two criteria have been implemented in an automated procedure that is written in the R language. A sample of 100 shallow landslides collected in Italy from 2002 to 2012 was used to calibrate the procedure. The cumulated event rainfall (E) and duration (D) of rainfall events that triggered the documented landslides are calculated through the new procedure and are fitted with power law in the D, E diagram. The results are discussed by comparing the D, E pairs calculated by the automated procedure and the ones by the expert method

    Extreme rainfall events in karst environments: the case study of September 2014 in the Gargano area (southern Italy)

    Get PDF
    In the first week of September 2014, the Gargano Promontory (Apulia, SE Italy) was hit by an extreme rainfall event that caused several landslides, floods and sinkholes. As a consequence of the floods, two people lost their lives and severe socio-economic damages were reported. The highest peaks of rainfall were recorded between September 3rd and 6th at the Cagnano Varano and San Marco in Lamis rain gauges with a maximum daily rainfall (over 230 mm) that is about 30% the mean annual rainfall. The Gargano Promontory is characterized by complex orographic conditions, with the highest elevation of about 1000 m a.s.l. The geological setting consists of different types of carbonate deposits affected by intensive development of karst processes. The morphological and climatic settings of the area, associated with frequent extreme rainfall events can cause various types of geohazards (e.g., landslides, floods, sinkholes). A further element enhancing the natural predisposition of the area to the occurrence of landslides, floods and sinkholes is an intense human activity, characterized by an inappropriate land use and management. In order to obtain consistent and reliable data on the effects produced by the storm, a systematic collection of information through field observations, a critical analysis of newspaper articles and web-news, and a co-operation with the Regional Civil Protection and local geologists started immediately after the event. The information collected has been organized in a database including the location, the occurrence time and the type of geohazard documented with photographs. The September 2014 extreme rainfall event in the Gargano Promontory was also analyzed to validate the forecasts issued by the Italian national early-warning system for rainfall-induced landslides (SANF), developed by the Research Institute for Geo-Hydrological Protection (IRPI) for the Italian national Department for Civil Protection (DPC). SANF compares rainfall measurements and forecasts with empirical rainfall thresholds for the prediction of landslide occurrence. SANF forecasts were compared to the documented landslides and discussed

    Liquefaction damage potential for seismic hazard evaluation in urbanized areas

    No full text
    The liquefaction susceptibility of granular soils under seismic actions is commonly estimated by means of the liquefaction safety factor and recently by the potential index also. Since its original formulation the potential index has been developed and modified according to both deterministic and probabilistic approaches in order to draw liquefaction microzonation maps. In this study a new approach to potential index definition is proposed in order to relate the liquefaction potential prediction to the loss of bearing capacity for shallow foundation. Such new method has been used to estimate the so called liquefaction damage potential PDL at Barletta site, located in Puglia Region, where strong seismic events may occur. © 2011 Elsevier Ltd

    GIS-based landslide hazard evaluation at the regional scale: some critical points in the permanent displacement approach for seismically-induced landslide maps

    No full text
    Landslide susceptibility and hazard are commonly developed by means of GIS (Geographic Information Systems) tools. Many products such as DTM (Digital Terrain Models), and geological, morphological and lithological layers (often, to be downloaded for free and integrated within GIS) are nowadays available on the web and ready to be used for urban planning purposes. The multiple sources of public information enable the local authorities to use these products for predicting hazards within urban territories by limited investments on technological infrastructures. On the contrary, the necessary expertise required for conducting pertinent hazard analyses is high, and rarely available at the level of the local authorities. In this respect, taking into account the production of seismically-induced landslide hazard maps at regional scale drawn by GIS tool, these can be performed according to the permanent displacement approach derived by Newmark’s sliding block method (Newmark, 1965). Some simplified assumptions are considered for occurrence of a seismic mass movement, listed as follows: (1) the Mohr-Coulomb criterion is used for the plastic displacement of the rigid block; (2) only downward movements are accounted for; (3) a translative sliding mechanism is assumed. Under such conditions, several expressions have been proposed for predicting permanent displacements of slopes during seismic events (Ambresys and Menu, 1988; Luzi and Pergalani 2000; Romeo 2000; Jibson 2007, among the others). These formulations have been provided by researchers for different ranges of seismic magnitudes, and for indexes describing the seismic action, such as peak ground acceleration, peak ground velocity, Arias Intensity, and damage potential. With respect to the resistant properties of the rock units, the critical acceleration is the relevant strength variable in every expressions; it is a function of local slope, groundwater level, unit weight shear resistance of the surficial sediments, and the assumed depth of the sliding surface. Thus, it is of paramount relevance to correctly understand and describe the dynamic behavior of the lithologies affected by the earthquake. Accordingly, we put here in evidence some critical points in the application of the permanent displacement formulations by considering the case study of Santa Susana Mountains (California, USA) shaken by the Northridge earthquake in 1994. During this earthquake, a high number of registrations has been collected, whilst soon after a careful inventory of the mass movements triggered by the shaking has been produced, together with analysis of the related failure mechanisms. Hence, these data allow to perform a back analysis in order to verify the reliability of some numerical expressions, such as those proposed by Ambraseys and Menu (1988), Romeo (2000), and Jibson (2007), with respect to the possible dynamic behavior of the lithologies affected by landslides. In this sector of California, the following lithologies crop out, that were involved in shallow landslides: (1) Quaternay deposits; (2) Saugus Formation; (3) Towsley Formation; (4) Pico Formation; (5) Topanga Formation; (6) Modelo Formation; (7) Simi Conglomerate; (8) Santa Susana Formation; (9) Llajas and Chatsworth Formations. The surveys carried out after the Northridge earthquake (Harp and Jibson, 1995), and the analysis of landslide distribution (Parise and Jibson 2000) pointed out that the strongest formations with slopes higher than 50 mainly suffered toppling or fall failures: thus, our hazard maps based on permanent displacements did not take into account such range of slopes. Further, areas with slopes lower than 10 were not affected by relevant mass movements. Thus, a limited range of slopes (between 10 and 45) was considered in the analyses, with depth of the sliding surface varying between 1 and 3 m, and using the resistance parameters of involved lithologies obtained from in situ and laboratory tests performed by local practitioners. Seismically-induced landslide hazard maps have been drawn using the aforementioned three expressions. The preliminary results show Quaternary deposits (including alluvium deposits, slope wash, and terrace deposits) as the lithologies most affected by permanent displacement. Moreover, Towsley and Modelo formations, that are stiffer than the previous rock units, and consist mostly of shales, siltstones and subordinate sandstones, show high hazard value where the slopes increase. The relevant role of local slope in permanent displacement extent is evident where lithologies are characterized by both cohesive and frictional resistance components

    A stationary criterion to identify the duration of efficient rainfalls to trigger shallow landslides

    No full text
    Even though rainfall is considered a well known trigger of natural slope instability, its effective role in initiating landsliding phenomena cannot be easily distinguished due to many time- and space- variable interactions among several factors (i.e. slope geometry, mechanical and hydraulic characters of superficial layers and the basin, etc.). A common approach to relate rainfall to the onset of shallow landslides is to plot effective rainfall intensity vs duration to draw intensity threshold lines. Since the earliest work by Caine (1980) on this topic, several researchers have tried to establish intensity thresholds by means of deterministic and probabilistic approaches from a number of worldwide and regional rainfall-landslide inventories. With respect to this intensity-duration threshold approach, information about rainfall-induced landslides are generally collected from chronicles or historical landslide time series, whilst no data about the hydraulic and geometric features of soils and rocks involved into the natural slope instability is commonly taken into account. On the contrary, rainfall heights at different time lag (even every 30 min) are available at different stations by rain gauges. As rain gauge measurements are concerned, these can suffer many problems such as temporary saturation, temporary lack of data transmission and anomalous geographical distribution of the rainfall. Recently, satellite data have been employed to quantify the rainfall event related to landslide occurrence but their correlation to the effective rainfall height at a site is not guaranteed yet. So far, rain gauge measures still represent the most used option. Moreover, the physical simplification introduced by such “rainfall based” approach on landslide prediction can be accepted due to the assumption that only shallow landslides are considered for drawing a regional intensity-duration threshold from the considered data. Starting from the above considerations, and within the framework of a nationwide project by CNR-IRPI, under funds from the National Civil Department, the authors propose in this article a new criterion to identify from rain gauge measures the duration of the rainfalls triggering shallow landslides. The new criterion represents an attempt to identify the duration of the “effective rainfall event” responsible for the landslide occurrence, as reported by newspaper clips and/or in real time web newspapers. At this regard, antecedent precipitations are not taken into account, since the model considers only that amount of rainfall that effectively triggers the slope failure. The model analyses the hourly rainfall time series for at least one month before occurrence of the shallow landslide, using a historical landslide archive covering the time range between 2002 and 2011 in the Lazio Region, central Italy. This archive was obtained by a procedure consisting of the following steps: i) critical scrutiny of chronicles, ii) identification of the landslide site, and iii) retrieval of the rainfall data from the nearest rain gauge station within the pluviometric network provided by the National Department of Civil Protection. The proposed method, for each reported landslide, uses the cumulative function of the rainfall heights and rainfall intensity calculated for different time lag. Then, in order to identify the beginning of the effective rainfall event, two conditions have to be satisfied: (1) the difference in rainfall intensity between two adjacent windows must be very low, and (2) the time series of lack of rainfall must be stationary. When these conditions are met, the initial time of the efficient rainfall necessary to trigger the landslide is established. Such criterion is statistically based according to the rainfall time distribution only. No assumption is needed on the probabilistic distributions of time series of rain/not rain. Such approach has been successfully applied to medium-to-long rainfalls, for which rain/not rain datasets are statistically significant. Very short rainfall durations (i.e. a few hours), due to the small number of data, are not suitable to this approach, but, on the other hand, their onset is generally easily recognizable by visual inspection of the height pluviometric trends

    A strategy to address the task of seismic micro-zoning in landslide-prone areas

    No full text
    As concerns landslide prevention and mitigation policies at the urban scale, the ability of Geographical Information Systems (GIS) to combine multi-layered information with high precision enables technicians and researchers to devote efforts in managing multiple hazards, such as seismically induced instability in urbanized areas. As a matter of fact, many villages in the Italian Apennines, placed near high-energy seismic sources, are characterized by active sliding that are seasonally remobilized by rainfall. GIS tools can be useful whether accurate Digital Elevation Models (DEM) are available and detailed mechanical and hydraulic characterization of superficial deposits over significant portion of the urban territory is undertaken. Moreover, the classic methods for estimating the seismic-induced permanent displacements within natural slopes are drawn from the generalization of Newmark's method. Such method can be applied to planar sliding mechanism that can be considered still valid wherever shallow landslides are generated by an earthquake. The failure mechanism depends on the mechanical properties of the superficial deposits. In this paper, the town of Castelfranci (Campania, southern Italy) has been studied. This small town, hosting two thousand inhabitants, suffers from the seasonal reactivation of landslides in clayey soil deposits due to rainfall. Furthermore, the site is seismically classified by means of the peak ground acceleration (PGA) equal to 0.246 g with respect to a 475 yr return period. Several studies on the evolution of slopes have been undertaken at Castelfranci and maps have been drawn at the urban scale not taking into any account the seismic hazard. This paper shows possible seismically induced hazard scenarios within the Castelfranci municipal territory aimed at microzonation of level 2, by estimating the slope permanent displacements comparable to those caused by the strongest historical seismic event that hit this area: the 1980 Irpinia earthquake. To this aim, geotechnical characterization of local soils collected over the last 25 yr by local technicians have been used to predict possible permanent displacements by means of Newmark's sliding block approach. Two simplified relationships relating peak ground acceleration and Arias intensity to permanent displacements have been used and compared. Although similar results are drawn, the two analyses point out the most hazardous sectors of the Castelfranci urban © 2013 Author(s)
    • …
    corecore