3 research outputs found

    Some results of a radon survey in 207 Serbian schools

    Get PDF
    In this paper the results of radon concentration measurements performed in 207 schools in 7 communities of Southern Serbia are presented. The annual radon concentration varied from 17 Bqm-3 to 428 Bq m-3 with a median value of 96 Bq m-3. The arithmetic mean (AM) of the 207 annual averages was 118 Bq m-3 with a standard deviation (SD) of 78 Bq m-3. The best distribution fitting of radon concentration by log-normal function was obtained. The log-normal parameters are the following: geometric mean (GM) = Bq m-3, geometric standard deviation (GSD) = 1.9. In addition, a spatial distribution of the indoor radon concentration over the investigated areas is observed.JRC.E.8-Nuclear securit

    Geographical distribution of the annual mean radon concentrations in primary schools of Southern Serbia e application of geostatistical methods

    No full text
    Between 2008 and 2011 a survey of radon (222Rn) was performed in schools of several districts of Southern Serbia. Some results have been published previously (Žunić et al., 2010; Carpentieri et al., 2011; Žunić et al., 2013). This article concentrates on the geographical distribution of the measured Rn concentrations. Applying geostatistical methods we generate "school radon maps" of expected mean concentrations and of estimated probabilities that a concentration threshold is exceeded. The resulting maps show a clearly structured spatial pattern which appears related to the geological background. In particular in areas with vulcanite and granitoid rocks, elevated radon (Rn) concentrations can be expected. The "school radon map" can therefore be considered as proxy to a map of the geogenic radon potential, and allows identification of radon-prone areas, i.e. areas in which higher Rn radon concentrations can be expected for natural reasons. It must be stressed that the "radon hazard", or potential risk, estimated this way, has to be distinguished from the actual radon risk, which is a function of exposure. This in turn may require (depending on the target variable which is supposed to measure risk) considering demographic and sociological reality, i.e. population density, distribution of building styles and living habits.JRC.E.8-Nuclear securit

    Field Experience with Soil Gas Mapping Using Japanese Passive Radon/Thoron Discriminative Detectors for Comparing High and Low Radiation Areas in Serbia (Balkan Region)

    Get PDF
    Radon/Thoron/Natural radioactivity/Niska Banja/Obrenovac. Based oil results of fieldwork in the Balkan Region of Serbia from 2005 to 2007, soil gas radon and thoron concentrations as well as gamma dose rates were measured. Campaigns were conducted in two different geological regions: Niska Banja, considered a high natural radiation area, and Obrenovac around the TentB Thermal Power Plant (TPP), a low natural radiation area. Radon and thoron gas measurements were made by using two types of Japanese passive radon/thoron detectors, Which included GPS data and gamma dose rates. The concentrations of soil radon gas in Niska Banja ranged from 1.8 to 161.1 kBq m(-3) the concentrations for soil thoron gas ranged from 0.9 to 23.5 kBq m(-3). The gamma close rates varied from 70 to 320 nGy h(-1). In the TentB area, radon concentration was found to range from 0.8 to 24.9 kBq m(-3) and thoron from 0.6 to 1.9 kBq m(-3). The gamma dose rate ranged from 90 to 130 nGy h(-1). In addition, the natural radioactivity of the soil was investigated at the low background area. The radium and thorium contents in collected soil samples ranged from 23 to 58 and 33 to 67 Bq kg(-1), respectively. As a result of correlation analyses between the measured values, the highest correlation coefficient (R GT 0.95) was found for thorium ill the soil and the thoron gas concentration
    corecore