552 research outputs found
Kinetics of phloretin binding to phosphatidylcholine vesicle membranes.
The submillisecond kinetics for phloretin binding to unilamellar phosphatidylcholine (PC) vesicles was investigated using the temperature-jump technique. Spectrophotometric studies of the equilibrium binding performed at 328 nm demonstrated that phloretin binds to a single set of independent, equivalent sites on the vesicle with a dissociation constant of 8.0 microM and a lipid/site ratio of 4.0. The temperature of the phloretin-vesicle solution was jumped by 4 degrees C within 4 microseconds producing a monoexponential, concentration-dependent relaxation process with time constants in the 30--200-microseconds time range. An analysis of the concentration dependence of relaxation time constants at pH 7.30 and 24 degrees C yielded a binding rate constant of 2.7 X 10(8) M-1 s-1 and an unbinding constant of 2,900 s-1; approximately 66 percent of total binding sites are exposed at the outer vesicle surface. The value of the binding rate constant and three additional observations suggest that the binding kinetics are diffusion limited. The phloretin analogue, naringenin, which has a diffusion coefficient similar to phloretin yet a dissociation constant equal to 24 microM, bound to PC vesicle with the same rate constant as phloretin did. In addition, the phloretin-PC system was studied in buffers made one to six times more viscous than water by addition of sucrose or glycerol to the differ. The equilibrium affinity for phloretin binding to PC vesicles is independent of viscosity, yet the binding rate constant decreases with the expected dependence (kappa binding alpha 1/viscosity) for diffusion-limited processes. Thus, the binding rate constant is not altered by differences in binding affinity, yet depends upon the diffusion coefficient in buffer. Finally, studies of the pH dependence of the binding rate constant showed a dependence (kappa binding alpha [1 + 10pH-pK]) consistent with the diffusion-limited binding of a weak acid
Optical measurement of osmotic water transport in cultured cells. Role of glucose transporters.
Methodology was developed to measure osmotic water permeability in monolayer cultured cells and applied to examine the proposed role of glucose transporters in the water pathway (1989. Proc. Natl. Acad. Sci. USA. 86:8397-8401). J774 macrophages were grown on glass coverslips and mounted in a channel-type perfusion chamber for rapid fluid exchange without cell detachment. Relative cell volume was measured by 45 degrees light scattering using an inverted microscope; measurement accuracy was validated by confocal imaging microscopy. The time required for greater than 90% fluid exchange was less than 1 s. In response to a decrease in perfusate osmolality from 300 to 210 mosM, cells swelled without lag at an initial rate of 4.5%/s, corresponding to a water permeability coefficient of (6.3 +/- 0.4) x 10(-3) cm/s (SE, n = 20, 23 degrees C), assuming a cell surface-to-volume ratio of 4,400 cm-1. The initial rate of cell swelling was proportional to osmotic gradient size, independent of perfusate viscosity, and increased by amphotericin B (25 micrograms/ml), and had an activation energy of 10.0 +/- 1 kcal/mol (12-39 degrees C). The compounds phloretin (20 microM) and cytochalasin B (2.5 micrograms/ml) inhibited glucose transport by greater than 85% but did not influence Pf in paired experiments in which Pf was measured before and after inhibitor addition. The mercurials HgCl2 (0.1 mM) and p-chloromercuribenzoate (1 mM) did not inhibit Pf. A stopped-flow light scattering technique was used to measure Pf independently in J774 macrophages grown in suspension culture. Pf in suspended cells was (4.4 +/- 0.3) x 10(-3) cm/s (assuming a surface-to-volume ratio of 8,800 cm-1), increased more than threefold by amphotericin B, and not inhibited by phloretin and cytochalasin B under conditions of strong inhibition of glucose transport. The glucose reflection coefficient was 0.98 +/- 0.03 as measured by induced osmosis, assuming a unity reflection coefficient for sucrose. These results establish a quantitative method for measurement of osmotic water transport in adherent cultured cells and provide evidence that glucose transporters are not involved in the water transporting pathway
Very high water permeability in vasopressin-induced endocytic vesicles from toad urinary bladder.
The regulation of transepithelial water permeability in toad urinary bladder is believed to involve a cycling of endocytic vesicles containing water transporters between an intracellular compartment and the cell luminal membrane. Endocytic vesicles arising from luminal membrane were labeled selectively in the intact toad bladder with the impermeant fluid-phase markers 6-carboxyfluorescein (6CF) or fluorescein-dextran. A microsomal preparation containing labeled endocytic vesicles was prepared by cell scraping, homogenization, and differential centrifugation. Osmotic water permeability was measured by a stopped-flow fluorescence technique in which microsomes containing 50 mM mannitol, 5 mM K phosphate, pH 8.5 were subject to a 60-mM inwardly directed gradient of sucrose; the time course of endosome volume, representing osmotic water transport, was inferred from the time course of fluorescence self-quenching. Endocytic vesicles were prepared from toad bladders with hypoosmotic lumen solution treated with (group A) or without (group B) serosal vasopressin at 23 degrees C, and bladders in which endocytosis was inhibited by treatment with vasopressin at 0-2 degrees C (group C), or with vasopressin plus sodium azide at 23 degrees C (group D). Stopped-flow results in all four groups showed a slow rate of 6CF fluorescence decrease (time constants 1.0-1.7 s for exponential fit) indicating a component of nonendocytic 6CF entrapment into sealed vesicles. However, in vesicles from group A only, there was a very rapid 6CF fluorescence decrease (time constant 9.6 +/- 0.2 ms, SEM, 18 separate preparations) with an osmotic water permeability coefficient (Pf) of greater than 0.1 cm/s (18 degrees C) and activation energy of 3.9 +/- 0.8 kcal/mol (16 kJ/mol). Pf was inhibited reversibly by greater than 60% by 1 mM HgCl2. The rapid fluorescence decrease was absent in vesicles in groups B, C, and D. These results demonstrate the presence of functional water transporters in vasopressin-induced endocytic vesicles from toad bladder, supporting the hypothesis that water channels are cycled to and from the luminal membrane and providing a functional marker for the vasopressin-sensitive water channel. The calculated Pf in the vasopressin-induced endocytic vesicles is the highest Pf reported for any biological or artificial membrane
Anion transport inhibitor binding to band 3 in red blood cell membranes.
The inhibitor of anion exchange 4,4'-dibenzoamido-2,2'-disulfonic stilbene (DBDS) binds to band 3, the anion transport protein in human red cell ghost membranes, and undergoes a large increase in fluorescence intensity when bound to band 3. Equilibrium binding studies performed in the absence of transportable anions show that DBDS binds to both a class of high-affinity (65 nM) and low-affinity (820 nM) sites with stoichiometry equivalent to 1.6 nmol/mg ghost protein for each site, which is consistent with one DBDS site on each band 3 monomer. The kinetics of DBDS binding were studied both by stopped-flow and temperature-jump experiments. The stopped-flow data indicate that DBDS binding to the apparent high-affinity site involves association with a low-affinity site (3 microM) followed by a slow (4 s-1) conformational change that locks the DBDS molecule in place. A detailed, quantitative fit of the temperature-jump data to several binding mechanisms supports a sequential-binding model, in which a first DBDS molecule binds to one monomer and induces a conformational change. A second DBDS molecule then binds to the second monomer. If the two monomers are assumed to be initially identical, thermodynamic characterization of the binding sites shows that the conformational change induces an interaction between the two monomers that modifies the characteristics of the second DBDS binding site
Regulation of the formation and water permeability of endosomes from toad bladder granular cells.
Osmotic water permeability (Pf) in toad bladder is regulated by the vasopressin (VP)-dependent movement of vesicles containing water channels between the cytoplasm and apical membrane of granular cells. Apical endosomes formed in the presence of serosal VP have the highest Pf of any biological or artificial membrane (Shi and Verkman. 1989. J. Gen. Physiol. 94:1101-1115). We examine here: (a) the influence of protein kinase A and C effectors on transepithelial Pf (Pfte) in intact bladders and on the number and Pf of labeled endosomes, and (b) whether endosome Pf can be modified physically or biochemically. In paired hemibladder studies, Pfte induced by maximal serosal VP (50 mU/ml, 0.03 cm/s) was not different than that induced by 8-Br-cAMP (1 mM), forskolin (50 microM), VP + 8-Br-cAMP, or VP + forskolin. Pf was measured in endosomes labeled in intact bladders with carboxyfluorescein by a stopped-flow, fluorescence-quenching assay using an isolated microsomal suspension; the number and Pf (0.08-0.11 cm/s, 18 degrees C) of labeled endosomes was not different in bladders treated with VP, forskolin, and 8-Br-cAMP. Protein kinase C activation by 1 microM mucosal phorbol myristate acetate (PMA) induced submaximal bladder Pfte (0.015 cm/s) and endosome Pf (0.022 cm/s) in the absence of VP, but had little effect on maximal Pfte and endosome Pf induced by VP. However, PMA increased by threefold the number of apical endosomes with high Pf formed in response to serosal VP. Pf of endosomes containing the VP-sensitive water channel decreased fourfold by increasing membrane fluidity with hexanol or chloroform (0-75 mM); Pf of phosphatidylcholine liposomes (0.002 cm/s) increased 2.5-fold under the same conditions. Endosome Pf was mildly pH dependent, strongly inhibited by HgCl2, but not significantly altered by GTP gamma S, Ca, ATP + protein kinase A, and phosphatase action. We conclude that: (a) water channels cycled in endocytic vesicles are functional and not subject to physiological regulation, (b) VP and forskolin do not have cAMP-independent cellular actions, (c) activation of protein kinase C stimulates trafficking of water channels, but does not increase the number of apical membrane water channels induced by maximal VP, and (d) water channel function is sensitive to membrane fluidity. By using VP and PMA together, large quantities of endosomes containing the VP-sensitive water channel are labeled with fluid-phase endocytic markers
Solvent drag measurement of transcellular and basolateral membrane NaCl reflection coefficient in kidney proximal tubule.
The NaCl reflection coefficient in proximal tubule has important implications for the mechanisms of near isosmotic volume reabsorption. A new fluorescence method was developed and applied to measure the transepithelial (sigma NaClTE) and basolateral membrane (sigma NaClcl) NaCl reflection coefficients in the isolated proximal straight tubule from rabbit kidney. For sigma NaClTE measurement, tubules were perfused with buffers containing 0 Cl, the Cl-sensitive fluorescent indicator 6-methoxy-N-[3-sulfopropyl] quinolinium and a Cl-insensitive indicator fluorescein sulfonate, and bathed in buffers of differing cryoscopic osmolalities containing NaCl. The transepithelial Cl gradient along the length of the tubule was measured in the steady state by a quantitative ratio imaging technique. A mathematical model based on the Kedem-Katchalsky equations was developed to calculate the axial profile of [Cl] from tubule geometry, lumen flow, water (Pf) and NaCl (PNaCl) permeabilities, and sigma NaClTE. A fit of experimental results to the model gave PNaCl = (2.25 +/- 0.2) x 10(-5) cm/s and sigma NaClTE = 0.98 +/- 0.03 at 23 degrees C. For measurement of sigma NaClbl, tubule cells were loaded with SPQ in the absence of Cl. NaCl solvent drag was measured from the time course of NaCl influx in response to rapid (less than 1 s) Cl addition to the bath solution. With bath-to-cell cryoscopic osmotic gradients of 0, -60, and +30 mosmol, initial Cl influx was 1.23, 1.10, and 1.25 mM/s; a fit to a mathematical model gave sigma NaClbl = 0.97 +/- 0.04. These results indicate absence of NaCl solvent drag in rabbit proximal tubule. The implications of these findings for water and NaCl movement in proximal tubule are evaluated
Neuromyelitis optica pathology in rats following intraperitoneal injection of NMO-IgG and intracerebral needle injury
INTRODUCTION: Animal models of neuromyelitis optica (NMO) are needed for drug testing and evaluation of NMO disease pathogenesis mechanisms. RESULTS: We describe a novel passive-transfer model of NMO in which rats made seropositive for human anti-aquaporin-4 (AQP4) immunoglobulin G antibody (NMO-IgG) by intraperitoneal (IP) injections were subject to intracerebral needle injury. Following a single IP injection, NMO-IgG distributed rapidly to peripheral AQP4-expressing cells (kidney collecting duct, gastric glands, airways, skeletal muscle) and area postrema in brain, but not elsewhere in the central nervous system; however, no pathology was seen in brain, spinal cord, optic nerve or peripheral tissues. After testing various maneuvers to produce NMO-IgG-dependent pathology in brain, we found that transient puncture of brain parenchyma with a 28-gauge needle in NMO-IgG seropositive rats produced robust NMO pathology around the needle track, with loss of AQP4 and glial fibrillary acidic protein, granulocyte and macrophage infiltration, centrovascular deposition of activated complement, and blood–brain barrier disruption, with demyelination by 5 days. Pathology was not seen in rats receiving control (non-NMO) human IgG or in NMO-IgG-seropositive rats made complement-deficient by cobra venom factor. Interestingly, at 1 day a reversible, multifocal astrocytopathy was seen with loss of AQP4 and GFAP (but not myelin) in areas away from the needle track. CONCLUSIONS: NMO-IgG-seropositivity alone is not sufficient to cause NMO pathology in rats, but a single intracerebral needle insertion, without pre-existing inflammation or infusion of pro-inflammatory factors, was sufficient to produce robust NMO pathology in seropositive rats
Aquaporin-4-dependent K(+) and water transport modeled in brain extracellular space following neuroexcitation.
Potassium (K(+)) ions released into brain extracellular space (ECS) during neuroexcitation are efficiently taken up by astrocytes. Deletion of astrocyte water channel aquaporin-4 (AQP4) in mice alters neuroexcitation by reducing ECS [K(+)] accumulation and slowing K(+) reuptake. These effects could involve AQP4-dependent: (a) K(+) permeability, (b) resting ECS volume, (c) ECS contraction during K(+) reuptake, and (d) diffusion-limited water/K(+) transport coupling. To investigate the role of these mechanisms, we compared experimental data to predictions of a model of K(+) and water uptake into astrocytes after neuronal release of K(+) into the ECS. The model computed the kinetics of ECS [K(+)] and volume, with input parameters including initial ECS volume, astrocyte K(+) conductance and water permeability, and diffusion in astrocyte cytoplasm. Numerical methods were developed to compute transport and diffusion for a nonstationary astrocyte-ECS interface. The modeling showed that mechanisms b-d, together, can predict experimentally observed impairment in K(+) reuptake from the ECS in AQP4 deficiency, as well as altered K(+) accumulation in the ECS after neuroexcitation, provided that astrocyte water permeability is sufficiently reduced in AQP4 deficiency and that solute diffusion in astrocyte cytoplasm is sufficiently low. The modeling thus provides a potential explanation for AQP4-dependent K(+)/water coupling in the ECS without requiring AQP4-dependent astrocyte K(+) permeability. Our model links the physical and ion/water transport properties of brain cells with the dynamics of neuroexcitation, and supports the conclusion that reduced AQP4-dependent water transport is responsible for defective neuroexcitation in AQP4 deficiency
Greatly attenuated experimental autoimmune encephalomyelitis in aquaporin-4 knockout mice
<p>Abstract</p> <p>Background</p> <p>The involvement of astrocyte water channel aquaporin-4 (AQP4) in autoimmune diseases of the central nervous system has been suggested following the identification of AQP4 autoantibodies in neuromyelitis optica, an inflammatory demyelinating disease.</p> <p>Results</p> <p>We investigated the involvement of AQP4 in disease severity in an established mouse model of experimental autoimmune encephalomyelitis (EAE) produced by immunization with myelin oligodendrocyte glycoprotein (MOG<sub>35–55</sub>) peptide. EAE was remarkably attenuated in AQP4 null mice compared to identically treated wildtype mice. Whereas most wildtype mice developed progressive tail and hindlimb paralysis, clinical signs were virtually absent in AQP4 null mice. Brain and spinal cords from AQP1 null mice showed greatly reduced mononuclear cell infiltration compared to wildtype mice, with relatively little myelin loss and axonal degeneration.</p> <p>Conclusion</p> <p>The reduced severity of autoimmune encephalomyelitis in AQP4 deficiency suggests AQP4 as a novel determinant in autoimmune inflammatory diseases of the central nervous system and hence a potential drug target.</p
- …