94 research outputs found

    Evaluation of Experimental Populations and Glandular-Haired Varieties of Alfalfa for Alfalfa Blotch Leafminer (Diptera: Agromyzidae) Feeding Injury

    Get PDF
    Following the spread of the alfalfa blotch leafminer, Agromyza frontella (Rondani) (Diptera: Agromyzidae), into Minnesota and Wisconsin U.S.A. during 1994-1997, three field trials were conducted in Minnesota to assess the potential for leafminer resistance among several sources of alfalfa (Medicago sativa), germplasm. In 1998, 86 entries were evaluated, most of which were experimental populations. In addition, six commercial varieties of alfalfa were evaluated. Of the six varieties, four had been bred for various levels of glandular-hair expression, specifically for resistance to the potato leafhopper, Empoasca fabae (Harris) (Homoptera: Cicadellidae). In two of three trials, we found no significant differences in leafmining injury to trifoliolates among the 86 entries, or among glandular-haired and traditional commercial varieties. At one location, ‘Arrest,’ ‘Ameriguard 301,’ and ‘DK 121 HG’ incurred significantly less pinhole injury than the glandular-haired variety ‘5347 LH’ or the commercial standard, ‘5454.’ However, after accounting for both pinhole and leafmining injury, only ‘Arrest’ and ‘Ameriguard 301’ had less injury than ‘5347 LH,’ ‘DK 121 HG,’ or the standard ‘5454.’ The low levels of resistance to A. frontella injury, among glandular-haired commercial alfalfa varieties and numerous experimental populations M. sativa, confirm the need for alternative A. frontella management strategies such as biological control and possible manipulation of harvest schedules

    Distribution of an Exotic Pest, \u3ci\u3eAgromyza Frontella\u3c/i\u3e (Diptera: Agromyzidae), in Manitoba, Canada.

    Get PDF
    Agromyza frontella is an exotic alfalfa pest from Europe that was first detected in North America in 1968 and has since spread westward into Ontario and the north central United States. Informal surveys had detected A. frontella in Manitoba, but its distribution throughout this province was unknown. In 1998 we collected alfalfa stems to detect plant damage and sweep samples to detect adult A. frontella and the parasitoid Dacnusa dryas throughout the alfalfa growing region of Manitoba. In south central Manitoba, 100% of stems were damaged by A. frontella, and\u3e 100 adults/10 sweeps were recorded at several sites. In west central Manitoba, no plants were damaged and \u3c 10 adults/10 sweeps were observed. We believe this region to be near the western edge of A. frontella distribution. The most important introduced parasitoid of A. frontella, D. dryas, was not detected which suggests that D. dryas has not invaded Manitoba

    Distribution of an Exotic Pest, \u3ci\u3eAgromyza Frontella\u3c/i\u3e (Diptera: Agromyzidae), in Manitoba, Canada.

    Get PDF
    Agromyza frontella is an exotic alfalfa pest from Europe that was first detected in North America in 1968 and has since spread westward into Ontario and the north central United States. Informal surveys had detected A. frontella in Manitoba, but its distribution throughout this province was unknown. In 1998 we collected alfalfa stems to detect plant damage and sweep samples to detect adult A. frontella and the parasitoid Dacnusa dryas throughout the alfalfa growing region of Manitoba. In south central Manitoba, 100% of stems were damaged by A. frontella, and\u3e 100 adults/10 sweeps were recorded at several sites. In west central Manitoba, no plants were damaged and \u3c 10 adults/10 sweeps were observed. We believe this region to be near the western edge of A. frontella distribution. The most important introduced parasitoid of A. frontella, D. dryas, was not detected which suggests that D. dryas has not invaded Manitoba

    Impacts of climate change on plant diseases – opinions and trends

    Get PDF
    There has been a remarkable scientific output on the topic of how climate change is likely to affect plant diseases in the coming decades. This review addresses the need for review of this burgeoning literature by summarizing opinions of previous reviews and trends in recent studies on the impacts of climate change on plant health. Sudden Oak Death is used as an introductory case study: Californian forests could become even more susceptible to this emerging plant disease, if spring precipitations will be accompanied by warmer temperatures, although climate shifts may also affect the current synchronicity between host cambium activity and pathogen colonization rate. A summary of observed and predicted climate changes, as well as of direct effects of climate change on pathosystems, is provided. Prediction and management of climate change effects on plant health are complicated by indirect effects and the interactions with global change drivers. Uncertainty in models of plant disease development under climate change calls for a diversity of management strategies, from more participatory approaches to interdisciplinary science. Involvement of stakeholders and scientists from outside plant pathology shows the importance of trade-offs, for example in the land-sharing vs. sparing debate. Further research is needed on climate change and plant health in mountain, boreal, Mediterranean and tropical regions, with multiple climate change factors and scenarios (including our responses to it, e.g. the assisted migration of plants), in relation to endophytes, viruses and mycorrhiza, using long-term and large-scale datasets and considering various plant disease control methods

    Emerging New Crop Pests: Ecological Modelling and Analysis of the South American Potato Psyllid Russelliana solanicola (Hemiptera: Psylloidea) and Its Wild Relatives

    Get PDF
    © 2017 Syfert et al. This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited

    Population Genetic Analysis Infers Migration Pathways of Phytophthora ramorum in US Nurseries

    Get PDF
    Recently introduced, exotic plant pathogens may exhibit low genetic diversity and be limited to clonal reproduction. However, rapidly mutating molecular markers such as microsatellites can reveal genetic variation within these populations and be used to model putative migration patterns. Phytophthora ramorum is the exotic pathogen, discovered in the late 1990s, that is responsible for sudden oak death in California forests and ramorum blight of common ornamentals. The nursery trade has moved this pathogen from source populations on the West Coast to locations across the United States, thus risking introduction to other native forests. We examined the genetic diversity of P. ramorum in United States nurseries by microsatellite genotyping 279 isolates collected from 19 states between 2004 and 2007. Of the three known P. ramorum clonal lineages, the most common and genetically diverse lineage in the sample was NA1. Two eastward migration pathways were revealed in the clustering of NA1 isolates into two groups, one containing isolates from Connecticut, Oregon, and Washington and the other isolates from California and the remaining states. This finding is consistent with trace forward analyses conducted by the US Department of Agriculture's Animal and Plant Health Inspection Service. At the same time, genetic diversities in several states equaled those observed in California, Oregon, and Washington and two-thirds of multilocus genotypes exhibited limited geographic distributions, indicating that mutation was common during or subsequent to migration. Together, these data suggest that migration, rapid mutation, and genetic drift all play a role in structuring the genetic diversity of P. ramorum in US nurseries. This work demonstrates that fast-evolving genetic markers can be used to examine the evolutionary processes acting on recently introduced pathogens and to infer their putative migration patterns, thus showing promise for the application of forensics to plant pathogens

    A method of determining where to target surveillance efforts in heterogeneous epidemiological systems

    Get PDF
    The spread of pathogens into new environments poses a considerable threat to human, animal, and plant health, and by extension, human and animal wellbeing, ecosystem function, and agricultural productivity, worldwide. Early detection through effective surveillance is a key strategy to reduce the risk of their establishment. Whilst it is well established that statistical and economic considerations are of vital importance when planning surveillance efforts, it is also important to consider epidemiological characteristics of the pathogen in question—including heterogeneities within the epidemiological system itself. One of the most pronounced realisations of this heterogeneity is seen in the case of vector-borne pathogens, which spread between ‘hosts’ and ‘vectors’—with each group possessing distinct epidemiological characteristics. As a result, an important question when planning surveillance for emerging vector-borne pathogens is where to place sampling resources in order to detect the pathogen as early as possible. We answer this question by developing a statistical function which describes the probability distributions of the prevalences of infection at first detection in both hosts and vectors. We also show how this method can be adapted in order to maximise the probability of early detection of an emerging pathogen within imposed sample size and/or cost constraints, and demonstrate its application using two simple models of vector-borne citrus pathogens. Under the assumption of a linear cost function, we find that sampling costs are generally minimised when either hosts or vectors, but not both, are sampled
    corecore