2 research outputs found

    Molecular Impacts of Dietary Exposure to Nanoplastics Combined or Not with Arsenic in the Caribbean Mangrove Oysters (Isognomon alatus)

    Get PDF
    Nanoplastics (NPs) are anthropogenic contaminants that raise concern, as they cross biological barriers. Metals’ adsorption on NPs’ surface also carries ecotoxicological risks to aquatic organisms. This study focuses on the impacts of three distinct NPs on the Caribbean oyster Isognomon alatus through dietary exposure. As such, marine microalgae Tisochrysis lutea were exposed to environmentally weathered mixed NPs from Guadeloupe (NPG), crushed pristine polystyrene nanoparticles (PSC), and carboxylated polystyrene nanoparticles of latex (PSL). Oysters were fed with NP-T. lutea at 10 and 100 µg L−1, concentrations considered environmentally relevant, combined or not with 1 mg L−1 pentoxide arsenic (As) in water. We investigated key gene expression in I. alatus’ gills and visceral mass. NP treatments revealed significant induction of cat and sod1 in gills and gapdh and sod1 in visceral mass. As treatment significantly induced sod1 expression in gills, but once combined with any of the NPs at both concentrations, basal mRNA levels were observed. Similarly, PSL treatment at 100 µg L−1 that significantly induced cat expression in gills or sod1 in visceral mass showed repressed mRNA levels when combined with As (reduction of 2222% and 34%, respectively, compared to the control). This study suggested a protective effect of the interaction between NPs and As, possibly by decreasing both contaminants’ surface reactivity

    Chemosphere

    No full text
    This study aims to assess the potential toxicity of (1) nanoplastics (NPs) issued from the fragmentation of larger plastic particles collected on the Caribbean marine coast (NP-G), and (2) polystyrene NPs (NP-PS), commonly used in the literature, on Caribbean swamp oysters (Isognomon alatus). Oysters were exposed to 7.5 and 15 μg.L−1 of each type of NPs, combined or not with arsenic (As) at 1 mg.L−1 for one week before molecular analyses at gene levels. Overall, the NP-G triggered more significant changes than NP-PS, especially when combined with As. Genes involved in the mitochondrial metabolism were strongly up-regulated in most of the conditions tested (up to 11.6 fold change for the NP-PS exposure at 7.5 μg.L−1 for the 12s). NPs in combination with As or not triggered a response against oxidative stress, with an intense repression of cat and sod1 (0.01 fold-changes for the NP-G condition at 7.5 μg.L−1). Both NP-G and NP-PS combined or not with As led to an up-regulation of apoptotic genes p53 and bax (up to 59.3 fold-changes for bax in the NP-G condition with As). Our study reported very innovative molecular results on oysters exposed to NPs from environmental sources. Our results suggest that the composition, surface charge, size, and the adsorbed contaminants of plastics from the natural environment may have synergic effects with plastic, which are underestimated when using manufactured NPs as NP-PS in ecotoxicological studies.Nanoparticules de plastiques dans l'environnement: source, impact et prédictio
    corecore