7,846 research outputs found
gamma-ray DBSCAN: a clustering algorithm applied to Fermi-LAT gamma-ray data. I. Detection performances with real and simulated data
The Density Based Spatial Clustering of Applications with Noise (DBSCAN) is a
topometric algorithm used to cluster spatial data that are affected by
background noise. For the first time, we propose the use of this method for the
detection of sources in gamma-ray astrophysical images obtained from the
Fermi-LAT data, where each point corresponds to the arrival direction of a
photon. We investigate the detection performance of the gamma-ray DBSCAN in
terms of detection efficiency and rejection of spurious clusters, using a
parametric approach, and exploring a large volume of the gamma-ray DBSCAN
parameter space. By means of simulated data we statistically characterize the
gamma-ray DBSCAN, finding signatures that differentiate purely random fields,
from fields with sources. We define a significance level for the detected
clusters, and we successfully test this significance with our simulated data.
We apply the method to real data, and we find an excellent agreement with the
results obtained with simulated data. We find that the gamma-ray DBSCAN can be
successfully used in the detection of clusters in gamma-ray data. The
significance returned by our algorithm is strongly correlated with that
provided by the Maximum Likelihood analysis with standard Fermi-LAT software,
and can be used to safely remove spurious clusters. The positional accuracy of
the reconstructed cluster centroid compares to that returned by standard
Maximum Likelihood analysis, allowing to look for astrophysical counterparts in
narrow regions, minimizing the chance probability in the counterpart
association. We find that gamma-ray DBSCAN is a powerful tool in the detection
of clusters in gamma-ray data, this method can be used both to look for
point-like sources, and extended sources, and can be potentially applied to any
astrophysical field related with detection of clusters in data.Comment: Accepted for publication in A&
The information content of gravitational wave harmonics in compact binary inspiral
The nonlinear aspect of gravitational wave generation that produces power at
harmonics of the orbital frequency, above the fundamental quadrupole frequency,
is examined to see what information about the source is contained in these
higher harmonics. We use an order (4/2) post-Newtonian expansion of the
gravitational wave waveform of a binary system to model the signal seen in a
spaceborne gravitational wave detector such as the proposed LISA detector.
Covariance studies are then performed to determine the ultimate accuracy to be
expected when the parameters of the source are fit to the received signal. We
find three areas where the higher harmonics contribute crucial information that
breaks degeneracies in the model and allows otherwise badly-correlated
parameters to be separated and determined. First, we find that the position of
a coalescing massive black hole binary in an ecliptic plane detector, such as
OMEGA, is well-determined with the help of these harmonics. Second, we find
that the individual masses of the stars in a chirping neutron star binary can
be separated because of the mass dependence of the harmonic contributions to
the wave. Finally, we note that supermassive black hole binaries, whose
frequencies are too low to be seen in the detector sensitivity window for long,
may still have their masses, distances, and positions determined since the
information content of the higher harmonics compensates for the information
lost when the orbit-induced modulation of the signal does not last long enough
to be apparent in the data.Comment: 13 pages, 5 figure
A family of filters to search for frequency dependent gravitational wave stochastic backgrounds
We consider a three dimensional family of filters based on broken power law
spectra to search for gravitational wave stochastic backgrounds in the data
from Earth-based laser interferometers. We show that such templates produce the
necessary fitting factor for a wide class of cosmological backgrounds and
astrophysical foregrounds and that the total number of filters required to
search for those signals in the data from first generation laser
interferometers operating at the design sensitivity is fairly smallComment: 4 pages, 4 figures, uses iopart.cls, accepted for publications on
Classical and Quantum Gravity (Special Issue, Proceedings of Amaldi 2003
LISA Response Function and Parameter Estimation
We investigate the response function of LISA and consider the adequacy of its
commonly used approximation in the high-frequency range of the observational
band. We concentrate on monochromatic binary systems, such as white dwarf
binaries. We find that above a few mHz the approxmation starts becoming
increasingly inaccurate. The transfer function introduces additional amplitude
and phase modulations in the measured signal that influence parameter estmation
and, if not properly accounted for, lead to losses of signal-to-noise ratio.Comment: 4 pages, 2 figures, amaldi 5 conference proceeding
The Effect of the LISA Response Function on Observations of Monochromatic Sources
The Laser Interferometer Space Antenna (LISA) is expected to provide the
largest observational sample of binary systems of faint sub-solar mass compact
objects, in particular white-dwarfs, whose radiation is monochromatic over most
of the LISA observational window. Current astrophysical estimates suggest that
the instrument will be able to resolve about 10000 such systems, with a large
fraction of them at frequencies above 3 mHz, where the wavelength of
gravitational waves becomes comparable to or shorter than the LISA arm-length.
This affects the structure of the so-called LISA transfer function which cannot
be treated as constant in this frequency range: it introduces characteristic
phase and amplitude modulations that depend on the source location in the sky
and the emission frequency. Here we investigate the effect of the LISA transfer
function on detection and parameter estimation for monochromatic sources. For
signal detection we show that filters constructed by approximating the transfer
function as a constant (long wavelength approximation) introduce a negligible
loss of signal-to-noise ratio -- the fitting factor always exceeds 0.97 -- for
f below 10mHz, therefore in a frequency range where one would actually expect
the approximation to fail. For parameter estimation, we conclude that in the
range 3mHz to 30mHz the errors associated with parameter measurements differ
from about 5% up to a factor of 10 (depending on the actual source parameters
and emission frequency) with respect to those computed using the long
wavelength approximation.Comment: replacement version with typos correcte
Leaving the Gang: A Review and Thoughts on Future Research
Researchers have examined aspects of gangs and their members for almost a century. This work, however, focuses primarily on youth prior to joining as well as during gang involvement. While comparatively less is known about the leaving processes, work in this area has been increasing in recent years. This chapter will discuss the growing body of research on the processes associated with leaving the gang. Specifically, it will review difficulties associated with defining gang desistance, theoretical perspectives on desistance, variations in motives, methods, and consequences of leaving, barriers to desistance, as well as make recommendations for policy and future research
Media use during adolescence: the recommendations of the Italian Pediatric Society.
BACKGROUND: The use of media device, such as smartphone and tablet, is currently increasing, especially among the youngest. Adolescents spend more and more time with their smartphones consulting social media, mainly Facebook, Instagram and Twitter because. Adolescents often feel the necessity to use a media device as a means to construct a social identity and express themselves. For some children, smartphone ownership starts even sooner as young as 7 yrs, according to internet safety experts. MATERIAL AND METHODS: We analyzed the evidence on media use and its consequences in adolescence. RESULTS: In literature, smartphones and tablets use may negatively influences the psychophysical development of the adolescent, such as learning, sleep and sigh. Moreover, obesity, distraction, addiction, cyberbullism and Hikikomori phenomena are described in adolescents who use media device too frequently. The Italian Pediatric Society provide action-oriented recommendations for families and clinicians to avoid negative outcomes. CONCLUSIONS: Both parents and clinicians should be aware of the widespread phenomenon of media device use among adolescents and try to avoid psychophysical consequences on the youngest
Eccentric double white dwarfs as LISA sources in globular clusters
We consider the formation of double white dwarfs (DWDs) through dynamical
interactions in globular clusters. Such interactions can give rise to eccentric
DWDs, in contrast to the exclusively circular population expected to form in
the Galactic disk. We show that for a 5-year Laser Interferometer Space Antenna
(LISA) mission and distances as far as the Large Magellanic Cloud, multiple
harmonics from eccentric DWDs can be detected at a signal-to-noise ratio higher
than 8 for at least a handful of eccentric DWDs, given their formation rate and
typical lifetimes estimated from current cluster simulations. Consequently the
association of eccentricity with stellar-mass LISA sources does not uniquely
involve neutron stars, as is usually assumed. Due to the difficulty of
detecting (eccentric) DWDs with present and planned electromagnetic
observatories, LISA could provide unique dynamical identifications of these
systems in globular clusters.Comment: Published in ApJ 665, L5
The growing (good) bubbles: insights into US consumers of sparkling wine
Purpose The purpose of this paper is to investigate sparkling wine consumption behavior and preferences of a large sample of US consumers (n=1,096) exploring the differences among genders and generational cohorts. Design/methodology/approach The sample has been drawn from Wine opinions, a specialized market research company with a large online panel of US wine consumers. Data were collected through a survey mailing model, administering a structured questionnaire. Findings Findings reveal that consumption frequency between genders is not statistically different and women generally prefer sparkling wines priced below 15\u201310\u2013$14.99 one. Originality/value The study sheds light on the changing consumer attitudes to create competitive advantages for wineries. Specifically, it provides valuable marketing insights into the peculiarities of sparkling wine consumption for each generation (e.g. price-point preferences and type of wine)
- …