173 research outputs found

    Scattering of Giant Magnons in CP^3

    Full text link
    We study classical scattering phase of CP^2 dyonic giant magnons in R_t x CP^3. We construct two-soliton solutions explicitly by the dressing method. Using these solutions, we compute the classical time delays for the scattering of giant magnons, and compare them to boundstate S-matrix elements derived from the conjectured AdS_4/CFT_3 S-matrix by Ahn and Nepomechie in the strong coupling limit. Our result is consistent with the conjectured S-matrix. The dyonic solutions play an essential role in revealing the polarization dependence of scattering phase.Comment: 29 pages; v2: minor corrections; v3: minor corrections, references added ; v4: minor corrections ; v5: minor corrections based on the published versio

    Phase preserving amplification near the quantum limit with a Josephson Ring Modulator

    Full text link
    Recent progress in solid state quantum information processing has stimulated the search for ultra-low-noise amplifiers and frequency converters in the microwave frequency range, which could attain the ultimate limit imposed by quantum mechanics. In this article, we report the first realization of an intrinsically phase-preserving, non-degenerate superconducting parametric amplifier, a so far missing component. It is based on the Josephson ring modulator, which consists of four junctions in a Wheatstone bridge configuration. The device symmetry greatly enhances the purity of the amplification process and simplifies both its operation and analysis. The measured characteristics of the amplifier in terms of gain and bandwidth are in good agreement with analytical predictions. Using a newly developed noise source, we also show that our device operates within a factor of three of the quantum limit. This development opens new applications in the area of quantum analog signal processing

    Lunin-Maldacena backgrounds from the classical Yang-Baxter equation -- Towards the gravity/CYBE correspondence

    Get PDF
    We consider \gamma-deformations of the AdS_5xS^5 superstring as Yang-Baxter sigma models with classical r-matrices satisfying the classical Yang-Baxter equation (CYBE). An essential point is that the classical r-matrices are composed of Cartan generators only and then generate abelian twists. We present examples of the r-matrices that lead to real \gamma-deformations of the AdS_5xS^5 superstring. Finally we discuss a possible classification of integrable deformations and the corresponding gravity solution in terms of solutions of CYBE. This classification may be called the gravity/CYBE correspondence.Comment: 18 pages, no figure, LaTeX, v2:references and further clarifications adde

    The Relativistic Avatars of Giant Magnons and their S-Matrix

    Full text link
    The motion of strings on symmetric space target spaces underlies the integrability of the AdS/CFT correspondence. Although these theories, whose excitations are giant magnons, are non-relativistic they are classically equivalent, via the Polhmeyer reduction, to a relativistic integrable field theory known as a symmetric space sine-Gordon theory. These theories can be formulated as integrable deformations of gauged WZW models. In this work we consider the class of symmetric spaces CP^{n+1} and solve the corresponding generalized sine-Gordon theories at the quantum level by finding the exact spectrum of topological solitons, or kinks, and their S-matrix. The latter involves a trignometric solution of the Yang-Baxer equation which exhibits a quantum group symmetry with a tower of states that is bounded, unlike for magnons, as a result of the quantum group deformation parameter q being a root of unity. We test the S-matrix by taking the semi-classical limit and comparing with the time delays for the scattering of classical solitons. We argue that the internal CP^{n-1} moduli space of collective coordinates of the solitons in the classical theory can be interpreted as a q-deformed fuzzy space in the quantum theory. We analyse the n=1 case separately and provide a further test of the S-matrix conjecture in this case by calculating the central charge of the UV CFT using the thermodynamic Bethe Ansatz.Comment: 33 pages, important correction to S-matrix to ensure crossing symmetr

    Standardised Outcomes in Nephrology-Polycystic Kidney Disease (SONG-PKD): study protocol for establishing a core outcome set in polycystic kidney disease

    Get PDF
    BACKGROUND: Autosomal dominant polycystic kidney disease (ADPKD) is the most common potentially life threatening inherited kidney disease and is responsible for 5-10% of cases of end-stage kidney disease (ESKD). Cystic kidneys may enlarge up to 20 times the weight of a normal kidney due to the growth of renal cysts, and patients with ADPKD have an increased risk of morbidity, premature mortality, and other life-time complications including renal and hepatic cyst and urinary tract infection, intracranial aneurysm, diverticulosis, and kidney pain which impair quality of life. Despite some therapeutic advances and the growing number of clinical trials in ADPKD, the outcomes that are relevant to patients and clinicians, such as symptoms and quality of life, are infrequently and inconsistently reported. This potentially limits the contribution of trials to inform evidence-based decision-making. The Standardised Outcomes in Nephrology-Polycystic Kidney Disease (SONG-PKD) project aims to establish a consensus-based set of core outcomes for trials in PKD (with an initial focus on ADPKD but inclusive of all stages) that patients and health professionals identify as critically important. METHODS: The five phases of SONG-PKD are: a systematic review to identify outcomes that have been reported in existing PKD trials; focus groups with nominal group technique with patients and caregivers to identify, rank, and describe reasons for their choices; qualitative stakeholder interviews with health professionals to elicit individual values and perspectives on outcomes for trials involving patients with PKD; an international three-round Delphi survey with all stakeholder groups (including patients, caregivers, healthcare providers, policy makers, researchers, and industry) to gain consensus on critically important core outcome domains; and a consensus workshop to review and establish a set of core outcome domains and measures for trials in PKD. DISCUSSION: The SONG-PKD core outcome set is aimed at improving the consistency and completeness of outcome reporting across ADPKD trials, leading to improvements in the reliability and relevance of trial-based evidence to inform decisions about treatment and ultimately improve the care and outcomes for people with ADPKD

    Redox-switch regulatory mechanism of thiolase from Clostridium acetobutylicum

    Get PDF
    Thiolase is the first enzyme catalysing the condensation of two acetyl-coenzyme A (CoA) molecules to form acetoacetyl-CoA in a dedicated pathway towards the biosynthesis of n-butanol, an important solvent and biofuel. Here we elucidate the crystal structure of Clostridium acetobutylicum thiolase (CaTHL) in its reduced/oxidized states. CaTHL, unlike those from other aerobic bacteria such as Escherichia coli and Zoogloea ramegera, is regulated by the redox-switch modulation through reversible disulfide bond formation between two catalytic cysteine residues, Cys88 and Cys378. When CaTHL is overexpressed in wild-type C. acetobutylicum, butanol production is reduced due to the disturbance of acidogenic to solventogenic shift. The CaTHLV77Q/N153Y/A286K mutant, which is not able to form disulfide bonds, exhibits higher activity than wild-type CaTHL, and enhances butanol production upon overexpression. On the basis of these results, we suggest that CaTHL functions as a key enzyme in the regulation of the main metabolism of C. acetobutylicum through a redox-switch regulatory mechanism.close0

    Skp is a multivalent chaperone of outer membrane proteins

    Get PDF
    The trimeric chaperone Skp sequesters outer-membrane proteins (OMPs) within a hydrophobic cage, thereby preventing their aggregation during transport across the periplasm in Gram-negative bacteria. Here, we studied the interaction between Escherichia coli Skp and five OMPs of varying size. Investigations of the kinetics of OMP folding revealed that higher Skp/OMP ratios are required to prevent the folding of 16-stranded OMPs compared with their 8-stranded counterparts. Ion mobility spectrometry–mass spectrometry (IMS–MS) data, computer modeling and molecular dynamics simulations provided evidence that 10- to 16-stranded OMPs are encapsulated within an expanded Skp substrate cage. For OMPs that cannot be fully accommodated in the expanded cavity, sequestration is achieved by binding of an additional Skp trimer. The results suggest a new mechanism for Skp chaperone activity involving the coordination of multiple copies of Skp in protecting a single substrate from aggregation

    Folding of Toll-like receptors by the HSP90 paralogue gp96 requires a substrate-specific cochaperone

    Get PDF
    Cytosolic HSP90 requires multiple cochaperones in folding client proteins. However, the function of gp96 (HSP90b1, grp94), an HSP90 paralogue in the endoplasmic reticulum (ER), is believed to be independent of cochaperones. Here, we demonstrate that gp96 chaperones multiple Toll-like receptors (TLRs), but not TLR3, in a manner that is dependent on another ER luminal protein, CNPY3. gp96 directly interacts with CNPY3, and the complex dissociates in the presence of adenosine triphosphate (ATP). Genetic disruption of gp96–CNPY3 interaction completely abolishes their TLR chaperone function. Moreover, we demonstrate that TLR9 forms a multimolecular complex with gp96 and CNPY3, and the binding of TLR9 to either molecule requires the presence of the other. We suggest that CNPY3 interacts with the ATP-sensitive conformation of gp96 to promote substrate loading. Our study has thus established CNPY3 as a TLR-specific cochaperone for gp96

    Analysis of MicroRNA Expression in the Prepubertal Testis

    Get PDF
    Only thirteen microRNAs are conserved between D. melanogaster and the mouse; however, conditional loss of miRNA function through mutation of Dicer causes defects in proliferation of premeiotic germ cells in both species. This highlights the potentially important, but uncharacterized, role of miRNAs during early spermatogenesis. The goal of this study was to characterize on postnatal day 7, 10, and 14 the content and editing of murine testicular miRNAs, which predominantly arise from spermatogonia and spermatocytes, in contrast to prior descriptions of miRNAs in the adult mouse testis which largely reflects the content of spermatids. Previous studies have shown miRNAs to be abundant in the mouse testis by postnatal day 14; however, through Next Generation Sequencing of testes from a B6;129 background we found abundant earlier expression of miRNAs and describe shifts in the miRNA signature during this period. We detected robust expression of miRNAs encoded on the X chromosome in postnatal day 14 testes, consistent with prior studies showing their resistance to meiotic sex chromosome inactivation. Unexpectedly, we also found a similar positional enrichment for most miRNAs on chromosome 2 at postnatal day 14 and for those on chromosome 12 at postnatal day 7. We quantified in vivo developmental changes in three types of miRNA variation including 5β€² heterogeneity, editing, and 3β€² nucleotide addition. We identified eleven putative novel pubertal testis miRNAs whose developmental expression suggests a possible role in early male germ cell development. These studies provide a foundation for interpretation of miRNA changes associated with testicular pathology and identification of novel components of the miRNA editing machinery in the testis
    • …
    corecore