17 research outputs found

    Morphological study of the antennal sensilla in Gerromorpha (Insecta: Hemiptera: Heteroptera)

    Get PDF
    The external morphology and distribution of the antennal sensilla of 21 species from five families of semiaquatic bugs (Gerromorpha) were examined using scanning electron microscopy. Nine main types were distinguished based on their morphological structure: sensilla trichoidea, sensilla chaetica, sensilla leaflike, sensilla campaniformia, sensilla coeloconica, sensilla ampullacea, sensilla basiconica, sensilla placoidea and sensilla bell-mouthed. The specific morphological structure of one type of sensilla (bell-mouthed sensilla) was observed only in Aquarius paludum. Several subtypes of sensilla are described, differentiated by number, location and type of sensillum characteristic for each examined taxon. The present study provides new data about the morphology and distribution of the antennal sensilla in Gerromorpha

    More Than Smell - COVID-19 Is Associated With Severe Impairment of Smell,Taste, and Chemesthesis

    Get PDF
    Recent anecdotal and scientific reports have provided evidence of a link between COVID-19 and chemosensory impairments, such as anosmia. However, these reports have downplayed or failed to distinguish potential effects on taste, ignored chemesthesis, and generally lacked quantitative measurements. Here, we report the development, implementation, and initial results of a multilingual, international questionnaire to assess self-reported quantity and quality of perception in 3 distinct chemosensory modalities (smell, taste, and chemesthesis) before and during COVID-19. In the first 11 days after questionnaire launch, 4039 participants (2913 women, 1118 men, and 8 others, aged 19-79) reported a COVID-19 diagnosis either via laboratory tests or clinical assessment. Importantly, smell, taste, and chemesthetic function were each significantly reduced compared to their status before the disease. Difference scores (maximum possible change +/- 100) revealed a mean reduction of smell (-79.7 +/- 28.7, mean +/- standard deviation), taste (-69.0 +/- 32.6), and chemesthetic (-37.3 +/- 36.2) function during COVID-19. Qualitative changes in olfactory ability (parosmia and phantosmia) were relatively rare and correlated with smell loss. Importantly, perceived nasal obstruction did not account for smell loss. Furthermore, chemosensory impairments were similar between participants in the laboratory test and clinical assessment groups. These results show that COVID-19-associated chemosensory impairment is not limited to smell but also affects taste and chemesthesis.The multimodal impact of COVID-19 and the lack of perceived nasal obstruction suggest that severe acute respiratory syndrome coronavirus strain 2 (SARS-CoV-2) infection may disrupt sensory-neural mechanisms

    Insects as chemosensors of humans and crops

    No full text
    Insects transmit disease to hundreds of millions of people a year, and cause enormous losses to the world's agricultural output. Many insects find the human or plant hosts on which they feed, and identify and locate their mates, primarily through olfaction and taste. Major advances have recently been made in understanding insect chemosensation at the molecular and cellular levels. These advances have provided new opportunities to control insects that cause massive damage to health and agriculture across the world
    corecore