13 research outputs found
Characterization of MHC-I in the blue tit (Cyanistes caeruleus) reveals low levels of genetic diversity and trans-population evolution across European populations
The major histcompatibility complex (MHC) is a vital component of the adaptive immune system in all vertebrates. This study is the first to characterize MHC class I (MHC-I) in blue tits (Cyanistes caeruleus), and we use MHC-I exon 3 sequence data from individuals originating from three locations across Europe: Spain, the Netherlands to Sweden. Our phylogeny of the 17 blue tit MHC-I alleles contains one allele cluster with low nucleotide diversity compared to the remaining more diverse alleles. We found a significant evidence for balancing selection in the peptide-binding region in the diverse allele group only. No separation according to geographic location was found in the phylogeny of alleles. Although the number of MHC-I loci of the blue tit is comparable to that of other passerine species, the nucleotide diversity of MHC-I appears to be much lower than that of other passerine species, including the closely related great tit (Parus major) and the severely inbred Seychelles warbler (Acrocephalus sechellensis). We believe that this initial MHC-I characterization in blue tits provides an important step towards understanding the mechanisms shaping MHC-I diversity in natural populations
Tertiary Lymphoid Organs in Rheumatoid Arthritis.
Rheumatoid Arthritis (RA) is a chronic systemic autoimmune disease. RA mainly affects the joints, with inflammation of the synovial membrane, characterized by hyperplasia, neo-angiogenesis, and immune cell infiltration that drives local inflammation and, if untreated, can lead to joint destruction and disability. In parallel to the well-known clinical heterogeneity, the underlying synovitis can also be significantly heterogeneous. In particular, in about 40% of patients with RA, synovitis is characterized by a dense lymphocytic infiltrate that can acquire the features of fully functional tertiary lymphoid organs (TLO). These structures amplify autoimmunity and inflammation locally associated with worse prognosis and potential implications for treatment response. Here, we will review the current knowledge on TLO in RA, with a focus on their pathogenetic and clinical relevance
Dried Blood Spots for Viral Load Monitoring in Malawi: Feasible and Effective
To evaluate the feasibility and effectiveness of dried blood spots (DBS) use for viral load (VL) monitoring, describing patient outcomes and programmatic challenges that are relevant for DBS implementation in sub-Saharan Africa.We recruited adult antiretroviral therapy (ART) patients from five district hospitals in Malawi. Eligibility reflected anticipated Ministry of Health VL monitoring criteria. Testing was conducted at a central laboratory. Virological failure was defined as >5000 copies/ml. Primary outcomes were program feasibility (timely result availability and patient receipt) and effectiveness (second-line therapy initiation).We enrolled 1,498 participants; 5.9% were failing at baseline. Median time from enrollment to receipt of results was 42 days; 79.6% of participants received results within 3 months. Among participants with confirmed elevated VL, 92.6% initiated second-line therapy; 90.7% were switched within 365 days of VL testing. Nearly one-third (30.8%) of participants with elevated baseline VL had suppressed (4 years were more likely to be failing than participants on therapy 1-4 years (RR 1.7, 95% CI 1.0-2.8); older participants were less likely to be failing (RR 0.95, 95% CI 0.92-0.98). There was no difference in likelihood of failure based on clinical symptoms (RR 1.17, 95% CI 0.65-2.11).DBS for VL monitoring is feasible and effective in real-world clinical settings. Centralized DBS testing may increase access to VL monitoring in remote settings. Programmatic outcomes are encouraging, especially proportion of eligible participants switched to second-line therapy
Applying new inter-individual approaches to assess fine-scale population genetic diversity in a neotropical frog, Eleutherodactylus ockendeni
We assess patterns of genetic diversity of a neotropical leaflitter frog, Eleutherodactylus ockendeni, in the upper Amazon of Ecuador without a priori delineation of biological populations and with sufficiently intensive sampling to assess inter-individual patterns. We mapped the location of each collected frog across a 5.4 1 km landscape at the Jatun Sacha Biological Station, genotyped 185 individuals using five species–specific DNA microsatellite loci, and sequenced a fragment of mitochondrial cytochrome b for a subset of 51 individuals. The microsatellites were characterized by high allelic diversity and homozygote excess across all loci, suggesting that when pooled the sample is not a panmictic population. We conclude that the lack of panmixia is not attributable to the influence of null alleles or biased sampling of consanguineous family groups. Multiple methods of population cluster analysis, using both Bayesian and maximum likelihood approaches, failed to identify discrete genetic clusters across the sampled area. Using multivariate spatial autocorrelation, kinship coefficients and relatedness coefficients, we identify a continuous isolation by distance population structure, with a first patch size of ca. 260 m and apparently large population sizes. Analysis of mtDNA corroborates the observation of high genetic diversity at fine scales: there are multiple haplotypes, they are non-randomly distributed and a binary haplotype correlogram shows significant spatial genetic autocorrelation. We demonstrate the utility of inter-individual genetic methods and caution against making a priori assumptions about population genetic structure based simply on arbitrary or convenient patterns of sampling