374 research outputs found

    Recent advances in catalytic and non-catalytic epoxidation of terpenes: a pathway to bio-based polymers from waste biomass

    Get PDF
    \ua9 2023 The Royal Society of Chemistry.Epoxides derived from waste biomass are a promising avenue for the production of bio-based polymers, including polyamides, polyesters, polyurethanes, and polycarbonates. This review article explores recent efforts to develop both catalytic and non-catalytic processes for the epoxidation of terpene, employing a variety of oxidizing agents and techniques for process intensification. Experimental investigations into the epoxidation of limonene have shown that these methods can be extended to other terpenes. To optimize the epoxidation of bio-based terpene, there is a need to develop continuous processes that address limitations in mass and heat transfer. This review discusses flow chemistry and innovative reactor designs as part of a multi-scale approach aimed at industrial transformation. These methods facilitate continuous processing, improve mixing, and either eliminate or reduce the need for solvents by enhancing heat transfer capabilities. Overall, the objective of this review is to contribute to the development of commercially viable processes for producing bio-based epoxides from waste biomass

    The Dawning Era of Personalized Medicine Exposes a Gap in Medical Education

    Get PDF
    Medical student Keyan Salari argues that it is crucial that medical students be trained to use and interpret patients' genetic information appropriately and responsibly

    Learning to segment when experts disagree

    Get PDF
    Recent years have seen an increasing use of supervised learning methods for segmentation tasks. However, the predictive performance of these algorithms depend on the quality of labels, especially in medical image domain, where both the annotation cost and inter-observer variability are high. In a typical annotation collection process, different clinical experts provide their estimates of the β€œtrue” segmentation labels under the influence of their levels of expertise and biases. Treating these noisy labels blindly as the ground truth can adversely affect the performance of supervised segmentation models. In this work, we present a neural network architecture for jointly learning, from noisy observations alone, both the reliability of individual annotators and the true segmentation label distributions. The separation of the annotators’ characteristics and true segmentation label is achieved by encouraging the estimated annotators to be maximally unreliable while achieving high fidelity with the training data. Our method can also be viewed as a translation of STAPLE, an established label aggregation framework proposed in Warfield et al. [1] to the supervised learning paradigm. We demonstrate first on a generic segmentation task using MNIST data and then adapt for usage with MRI scans of multiple sclerosis (MS) patients for lesion labelling. Our method shows considerable improvement over the relevant baselines on both datasets in terms of segmentation accuracy and estimation of annotator reliability, particularly when only a single label is available per image. An open-source implementation of our approach can be found at https://github.com/UCLBrain/MSLS

    Dissociable effects of 5-HT2C receptor antagonism and genetic inactivation on perseverance and learned non-reward in an egocentric spatial reversal task

    Get PDF
    Cognitive flexibility can be assessed in reversal learning tests, which are sensitive to modulation of 5-HT2C receptor (5-HT2CR) function. Successful performance in these tests depends on at least two dissociable cognitive mechanisms which may separately dissipate associations of previous positive and negative valence. The first is opposed by perseverance and the second by learned non-reward. The current experiments explored the effect of reducing function of the 5-HT2CR on the cognitive mechanisms underlying egocentric reversal learning in the mouse. Experiment 1 used the 5-HT2CR antagonist SB242084 (0.5 mg/kg) in a between-groups serial design and Experiment 2 used 5-HT2CR KO mice in a repeated measures design. Animals initially learned to discriminate between two egocentric turning directions, only one of which was food rewarded (denoted CS+, CSβˆ’), in a T- or Y-maze configuration. This was followed by three conditions; (1) Full reversal, where contingencies reversed; (2) Perseverance, where the previous CS+ became CSβˆ’ and the previous CSβˆ’ was replaced by a novel CS+; (3) Learned non-reward, where the previous CSβˆ’ became CS+ and the previous CS+ was replaced by a novel CS-. SB242084 reduced perseverance, observed as a decrease in trials and incorrect responses to criterion, but increased learned non-reward, observed as an increase in trials to criterion. In contrast, 5-HT2CR KO mice showed increased perseverance. 5-HT2CR KO mice also showed retarded egocentric discrimination learning. Neither manipulation of 5-HT2CR function affected performance in the full reversal test. These results are unlikely to be accounted for by increased novelty attraction, as SB242084 failed to affect performance in an unrewarded novelty task. In conclusion, acute 5-HT2CR antagonism and constitutive loss of the 5-HT2CR have opposing effects on perseverance in egocentric reversal learning in mice. It is likely that this difference reflects the broader impact of 5HT2CR loss on the development and maintenance of cognitive function

    HOXB5 Cooperates with NKX2-1 in the Transcription of Human RET

    Get PDF
    The enteric nervous system (ENS) regulates peristaltic movement of the gut, and abnormal ENS causes Hirschsprung's disease (HSCR) in newborns. HSCR is a congenital complex genetic disorder characterised by a lack of enteric ganglia along a variable length of the intestine. The receptor tyrosine kinase gene (RET) is the major HSCR gene and its expression is crucial for ENS development. We have previously reported that (i) HOXB5 transcription factor mediates RET expression, and (ii) mouse with defective HOXB5 activity develop HSCR phenotype. In this study, we (i) elucidate the underlying mechanisms that HOXB5 mediate RET expression, and (ii) examine the interactions between HOXB5 and other transcription factors implicated in RET expression. We show that human HOXB5 binds to the promoter region 5β€² upstream of the binding site of NKX2-1 and regulates RET expression. HOXB5 and NKX2-1 form a protein complex and mediate RET expression in a synergistic manner. HSCR associated SNPs at the NKX2-1 binding site (-5G>A rs10900296; -1A>C rs10900297), which reduce NKX2-1 binding, abolish the synergistic trans-activation of RET by HOXB5 and NKX2-1. In contrast to the synergistic activation of RET with NKX2-1, HOXB5 cooperates in an additive manner with SOX10, PAX3 and PHOX2B in trans-activation of RET promoter. Taken together, our data suggests that HOXB5 in coordination with other transcription factors mediates RET expression. Therefore, defects in cis- or trans-regulation of RET by HOXB5 could lead to reduction of RET expression and contribute to the manifestation of the HSCR phenotype

    Cytosolic phospholipase A2-Ξ± expression in breast cancer is associated with EGFR expression and correlates with an adverse prognosis in luminal tumours

    Get PDF
    BACKGROUND: The eicosanoid signalling pathway promotes the progression of malignancies through the production of proliferative prostaglandins (PGs). Cytosolic phospholipase A(2)Ξ± (cPLA(2)Ξ±) activity provides the substrate for cyclooxygenase-dependent PG release, and we have previously found that cPLA(2)Ξ± expression correlated with EGFR/HER2 over-expression in a small number of breast cancer cell lines. METHODS: The importance of differential cPLA(2)Ξ± activity in clinical breast cancer was established by relating the expression of cPLA(2)Ξ± in tissue samples from breast cancer patients, and two microarray-based gene expression datasets to different clinicopathological and therapeutic parameters. RESULTS: High cPLA(2)Ξ± mRNA expression correlated with clinical parameters of poor prognosis, which are characteristic of highly invasive tumours of the HER2-positive and basal-like subtype, including low oestrogen receptor expression and high EGFR expression. High cPLA(2)Ξ± expression decreased overall survival in patients with luminal cancers, and correlated with a reduced effect of tamoxifen treatment. The cPLA(2)Ξ± expression was an independent predictive parameter of poor response to endocrine therapy in the first 5 years of follow-up. CONCLUSION: This study shows a role of cPLA(2)Ξ± in luminal breast cancer progression, in which the enzyme could represent a novel therapeutic target and a predictive marker

    Jet energy measurement with the ATLAS detector in proton-proton collisions at root s=7 TeV

    Get PDF
    The jet energy scale and its systematic uncertainty are determined for jets measured with the ATLAS detector at the LHC in proton-proton collision data at a centre-of-mass energy of √s = 7TeV corresponding to an integrated luminosity of 38 pb-1. Jets are reconstructed with the anti-kt algorithm with distance parameters R=0. 4 or R=0. 6. Jet energy and angle corrections are determined from Monte Carlo simulations to calibrate jets with transverse momenta pTβ‰₯20 GeV and pseudorapidities {pipe}Ξ·{pipe}<4. 5. The jet energy systematic uncertainty is estimated using the single isolated hadron response measured in situ and in test-beams, exploiting the transverse momentum balance between central and forward jets in events with dijet topologies and studying systematic variations in Monte Carlo simulations. The jet energy uncertainty is less than 2. 5 % in the central calorimeter region ({pipe}Ξ·{pipe}<0. 8) for jets with 60≀pT<800 GeV, and is maximally 14 % for pT<30 GeV in the most forward region 3. 2≀{pipe}Ξ·{pipe}<4. 5. The jet energy is validated for jet transverse momenta up to 1 TeV to the level of a few percent using several in situ techniques by comparing a well-known reference such as the recoiling photon pT, the sum of the transverse momenta of tracks associated to the jet, or a system of low-pT jets recoiling against a high-pT jet. More sophisticated jet calibration schemes are presented based on calorimeter cell energy density weighting or hadronic properties of jets, aiming for an improved jet energy resolution and a reduced flavour dependence of the jet response. The systematic uncertainty of the jet energy determined from a combination of in situ techniques is consistent with the one derived from single hadron response measurements over a wide kinematic range. The nominal corrections and uncertainties are derived for isolated jets in an inclusive sample of high-pT jets. Special cases such as event topologies with close-by jets, or selections of samples with an enhanced content of jets originating from light quarks, heavy quarks or gluons are also discussed and the corresponding uncertainties are determined. Β© 2013 CERN for the benefit of the ATLAS collaboration
    • …
    corecore