5,478 research outputs found

    Improved mapping functions for atmospheric refraction correction in SLR

    Get PDF
    [1] We present two new mapping functions (MFs) to model the elevation angle dependence of the atmospheric delay for satellite laser ranging (SLR) data analysis. The new MFs were derived from ray tracing through a set of data from 180 radiosonde stations globally distributed, for the year 1999, and are valid for elevation angles above 3degrees. When compared against ray tracing of two independent years of radiosonde data (1997-1998) for the same set of stations, our MFs reveal submillimetre accuracy for elevation angles above 10degrees, representing a significant improvement over other MFs, and is confirmed in improved solutions of LAGEOS and LAGEOS 2 data analysis.info:eu-repo/semantics/publishedVersio

    Aspects Of Heavy Quark Theory

    Full text link
    Recent achievements in the heavy quark theory are critically reviewed. The emphasis is put on those aspects which either did not attract enough attention or cause heated debates in the current literature. Among other topics we discuss (i) basic parameters of the heavy quark theory; (ii) a class of exact QCD inequalities; (iii) new heavy quark sum rules; (iv) virial theorem; (v) applications (|V_cb| from the total semileptonic width and from the B->D* transition at zero recoil). In some instances new derivations of the previously known results are given, or new aspects addressed. In particular, we dwell on the exact QCD inequalities. Furthermore, a toy model is considered that may shed light on the controversy regarding the value of the kinetic energy of heavy quarks obtained by different methods.Comment: 67 pages, 6 Figures; plain LaTeX. Changes: Some equations in Sect.4 related to spin-nonsinglet sum rules are corrected. The references are updated

    Quantum Measurement Theory in Gravitational-Wave Detectors

    Get PDF
    The fast progress in improving the sensitivity of the gravitational-wave (GW) detectors, we all have witnessed in the recent years, has propelled the scientific community to the point, when quantum behaviour of such immense measurement devices as kilometer-long interferometers starts to matter. The time, when their sensitivity will be mainly limited by the quantum noise of light is round the corner, and finding the ways to reduce it will become a necessity. Therefore, the primary goal we pursued in this review was to familiarize a broad spectrum of readers with the theory of quantum measurements in the very form it finds application in the area of gravitational-wave detection. We focus on how quantum noise arises in gravitational-wave interferometers and what limitations it imposes on the achievable sensitivity. We start from the very basic concepts and gradually advance to the general linear quantum measurement theory and its application to the calculation of quantum noise in the contemporary and planned interferometric detectors of gravitational radiation of the first and second generation. Special attention is paid to the concept of Standard Quantum Limit and the methods of its surmounting.Comment: 147 pages, 46 figures, 1 table. Published in Living Reviews in Relativit

    Energy and angular momentum balance in wall-bounded superfluid turbulence

    Full text link
    A superfluid in the absence of the viscous normal component should be the best realization of an ideal inviscid Euler fluid. As expressed by d'Alembert's famous paradox, an ideal fluid does not exert drag on bodies past which it flows, or in other words, it does not exchange momentum with them. Also, the flow of an ideal fluid does not dissipate kinetic energy. We study experimentally whether these properties apply to the flow of superfluid 3He-B in a rotating cylinder at low temperatures. It is found that ideal behavior is broken by quantum turbulence, which leads to substantial energy dissipation, as observed also earlier. Here we show that remarkably, nearly ideal behavior is preserved with respect to the angular-momentum exchange between the superfluid and its container, i.e., the drag almost disappears in the zero-temperature limit. This mismatch between energy and angular-momentum transfer results in a new physical situation where the proper description of wall-bounded quantum turbulence requires two effective friction parameters, one for energy dissipation and another for momentum coupling, which become substantially different at very low temperatures.Comment: 7 pages, 3 figure

    New type of microengine using internal combustion of hydrogen and oxygen

    Get PDF
    Microsystems become part of everyday life but their application is restricted by lack of strong and fast motors (actuators) converting energy into motion. For example, widespread internal combustion engines cannot be scaled down because combustion reactions are quenched in a small space. Here we present an actuator with the dimensions 100x100x5 um^3 that is using internal combustion of hydrogen and oxygen as part of its working cycle. Water electrolysis driven by short voltage pulses creates an extra pressure of 0.5-4 bar for a time of 100-400 us in a chamber closed by a flexible membrane. When the pulses are switched off this pressure is released even faster allowing production of mechanical work in short cycles. We provide arguments that this unexpectedly fast pressure decrease is due to spontaneous combustion of the gases in the chamber. This actuator is the first step to truly microscopic combustion engines.Comment: Paper and Supplementary Information (to appear in Scientific Reports

    Durability of reclaimed asphalt pavement–coal fly ash–carbide lime blends under severe environmental conditions

    Get PDF
    The sustainable use of industrial residue in enhancing the long-term performance of reclaimed asphalt pavement (RAP) has been proven to be effective under freeze–thaw and wet–dry conditions. This study focuses on coal fly ash (FA) and carbide lime (CL) as the enhancing agents. It evaluates how the durability and long-term performance of compacted RAP–FA–CL mixtures are impacted by dry unit weight and lime content. The tested mixture’s specimens were moulded in three layers through static compaction inside a cylindrical mould. Several single-level variables were used in the stabilisation process. Among these were: FA content of 25%, optimum water content of 9% (modified effort) and seven days of curing. Additionally, three target dry unit weights (17, 18 and 19 kN/m3 – the last of which was determined using the modified Proctor energy) and three percentages of lime content (3%, 5% and 7%) were used for a comparative analysis. The tested specimens’ accumulated loss of mass (after wetting–drying and freezing–thawing cycles) and splitting tensile strength were both evaluated as a function of the porosity/lime index. The experiments revealed that compacted RAP–coal FA–CL mixtures performed noticeably worse when subjected to freezing–thawing cycles than when subjected to wetting–drying cycles. These results indicate an increase in the breadth of the porosity/lime index, as it is shown to control the long-term performance of compacted RAP–coal FA–CL mixtures, in addition to controlling their mechanical response

    Blood pressure variability and closed-loop baroreflex assessment in adolescent chronic fatigue syndrome during supine rest and orthostatic stress

    Get PDF
    Hemodynamic abnormalities have been documented in the chronic fatigue syndrome (CFS), indicating functional disturbances of the autonomic nervous system responsible for cardiovascular regulation. The aim of this study was to explore blood pressure variability and closed-loop baroreflex function at rest and during mild orthostatic stress in adolescents with CFS. We included a consecutive sample of 14 adolescents 12–18 years old with CFS diagnosed according to a thorough and standardized set of investigations and 56 healthy control subjects of equal sex and age distribution. Heart rate and blood pressure were recorded continuously and non-invasively during supine rest and during lower body negative pressure (LBNP) of –20 mmHg to simulate mild orthostatic stress. Indices of blood pressure variability and baroreflex function (α-gain) were computed from monovariate and bivariate spectra in the low-frequency (LF) band (0.04–0.15 Hz) and the high–frequency (HF) band (0.15–0.50 Hz), using an autoregressive algorithm. Variability of systolic blood pressure in the HF range was lower among CFS patients as compared to controls both at rest and during LBNP. During LBNP, compared to controls, α-gain HF decreased more, and α-gain LF and the ratio of α-gain LF/α-gain HF increased more in CFS patients, all suggesting greater shift from parasympathetic to sympathetic baroreflex control. CFS in adolescents is characterized by reduced systolic blood pressure variability and a sympathetic predominance of baroreflex heart rate control during orthostatic stress. These findings may have implications for the pathophysiology of CFS in adolescents

    Cryptorchidism in Children with Zika-Related Microcephaly.

    Get PDF
    The genitourinary tract was recently identified as a potential site of complications related to the congenital Zika syndrome (CZS). We provide the first report of a series of cryptorchidism cases in 3-year-old children with Zika-related microcephaly who underwent consultations between October 2018 and April 2019 as part of the follow-up of the children cohort of the Microcephaly Epidemic Research Group, Pernambuco, Brazil. Of the 22 males examined, eight (36.4%) presented with cryptorchidism. Among 14 undescended testis cases, 11 (78.6%) could be palpated in the inguinal region. Seven of the eight children had severe microcephaly. Conventional risk factors for cryptorchidism were relatively infrequent in these children. We hypothesize that cryptorchidism is an additional manifestation of CZS present in children with severe microcephaly. As in our cases, for most of the children, the testes were located in the inguinal region, and the possible mechanisms for cryptorchidism were gubernaculum disturbance or cremasteric abnormality

    Influence of hyperhomocysteinemia on the cellular redox state - Impact on homocysteine-induced endothelial dysfunction

    Get PDF
    Hyperhomocysteinemia is an independent risk factor for the development of atherosclerosis. An increasing body of evidence has implicated oxidative stress as being contributory to homocysteines deleterious effects on the vasculature. Elevated levels of homocysteine may lead to increased generation of superoxide by a biochemical mechanism involving nitric oxide synthase, and, to a lesser extent, by an increase in the chemical oxidation of homocysteine and other aminothiols in the circulation. The resultant increase in superoxide levels is further amplified by homocysteinedependent alterations in the function of cellular antioxidant enzymes such as cellular glutathione peroxidase or extracellular superoxide dismutase. One direct clinical consequence of elevated vascular superoxide levels is the inactivation of the vasorelaxant messenger nitric oxide, leading to endothelial dysfunction. Scavenging of superoxide anion by either superoxide dismutase or 4,5-dihydroxybenzene 1,3-disulfonate (Tiron) reverses endothelial dysfunction in hyperhomocysteinemic animal models and in isolated aortic rings incubated with homocysteine. Similarly, homocysteineinduced endothelial dysfunction is also reversed by increasing the concentration of the endogenous antioxidant glutathione or overexpressing cellular glutathione peroxidase in animal models of mild hyperhomocysteinemia. Taken together, these findings strongly suggest that the adverse vascular effects of homocysteine are at least partly mediated by oxidative inactivation of nitric oxide

    The value of subtraction MRI in detection of amyloid-related imaging abnormalities with oedema or effusion in Alzheimer's patients: An interobserver study

    Get PDF
    BACKGROUND: Immunotherapeutic treatments targeting amyloid-β plaques in Alzheimer's disease (AD) are associated with the presence of amyloid-related imaging abnormalities with oedema or effusion (ARIA-E), whose detection and classification is crucial to evaluate subjects enrolled in clinical trials. PURPOSE: To investigate the applicability of subtraction MRI in the ARIA-E detection using an established ARIA-E-rating scale. METHODS: We included 75 AD patients receiving bapineuzumab treatment, including 29 ARIA-E cases. Five neuroradiologists rated their brain MRI-scans with and without subtraction images. The accuracy of evaluating the presence of ARIA-E, intraclass correlation coefficient (ICC) and specific agreement was calculated. RESULTS: Subtraction resulted in higher sensitivity (0.966) and lower specificity (0.970) than native images (0.959, 0.991, respectively). Individual rater detection was excellent. ICC scores ranged from excellent to good, except for gyral swelling (moderate). Excellent negative and good positive specific agreement among all ARIA-E imaging features was reported in both groups. Combining sulcal hyperintensity and gyral swelling significantly increased positive agreement for subtraction images. CONCLUSION: Subtraction MRI has potential as a visual aid increasing the sensitivity of ARIA-E assessment. However, in order to improve its usefulness isotropic acquisition and enhanced training are required. The ARIA-E rating scale may benefit from combining sulcal hyperintensity and swelling. KEY POINTS: • Subtraction technique can improve detection amyloid-related imaging-abnormalities with edema/effusion in Alzheimer's patients. • The value of ARIA-E detection, classification and monitoring using subtraction was assessed. • Validation of an established ARIA-E rating scale, recommendations for improvement are reported. • Complementary statistical methods were employed to measure accuracy, inter-rater-reliability and specific agreement
    corecore