12 research outputs found

    Historical Isolation versus Recent Long-Distance Connections between Europe and Africa in Bifid Toadflaxes (Linaria sect. Versicolores)

    Get PDF
    Background: Due to its complex, dynamic and well-known paleogeography, the Mediterranean region provides an ideal framework to study the colonization history of plant lineages. The genus Linaria has its diversity centre in the Mediterranean region, both in Europe and Africa. The last land connection between both continental plates occurred during the Messinian Salinity Crisis, in the late Miocene (5.96 to 5.33 Ma). Methodology/Principal Findings: We analyzed the colonization history of Linaria sect. Versicolores (bifid toadflaxes), which includes c. 22 species distributed across the Mediterranean, including Europe and Africa. Two cpDNA regions (rpl32-trnL UAG and trnK-matK) were sequenced from 66 samples of Linaria. We conducted phylogenetic, dating, biogeographic and phylogeographic analyses to reconstruct colonization patterns in space and time. Four major clades were found: two of them exclusively contain Iberian samples, while the other two include northern African samples together with some European samples. The bifid toadflaxes have been split in African and European clades since the late Miocene, and most lineage and speciation differentiation occurred during the Pliocene and Quaternary. We have strongly inferred four events of post-Messinian colonization following long-distance dispersal from northern Africa to the Iberian Peninsula, Sicily and Greece. Conclusions/Significance: The current distribution of Linaria sect. Versicolores lineages is explained by both ancien

    Guidelines for the use and interpretation of assays for monitoring autophagy (4th edition)1.

    Get PDF
    In 2008, we published the first set of guidelines for standardizing research in autophagy. Since then, this topic has received increasing attention, and many scientists have entered the field. Our knowledge base and relevant new technologies have also been expanding. Thus, it is important to formulate on a regular basis updated guidelines for monitoring autophagy in different organisms. Despite numerous reviews, there continues to be confusion regarding acceptable methods to evaluate autophagy, especially in multicellular eukaryotes. Here, we present a set of guidelines for investigators to select and interpret methods to examine autophagy and related processes, and for reviewers to provide realistic and reasonable critiques of reports that are focused on these processes. These guidelines are not meant to be a dogmatic set of rules, because the appropriateness of any assay largely depends on the question being asked and the system being used. Moreover, no individual assay is perfect for every situation, calling for the use of multiple techniques to properly monitor autophagy in each experimental setting. Finally, several core components of the autophagy machinery have been implicated in distinct autophagic processes (canonical and noncanonical autophagy), implying that genetic approaches to block autophagy should rely on targeting two or more autophagy-related genes that ideally participate in distinct steps of the pathway. Along similar lines, because multiple proteins involved in autophagy also regulate other cellular pathways including apoptosis, not all of them can be used as a specific marker for bona fide autophagic responses. Here, we critically discuss current methods of assessing autophagy and the information they can, or cannot, provide. Our ultimate goal is to encourage intellectual and technical innovation in the field

    Experimental evidence for action imitation in killer whales (Orcinus orca)

    No full text
    Comparative experimental studies of imitative learning have focused mainly on primates and birds. However, cetaceans are promising candidates to display imitative learning as they have evolved in socioecological settings that have selected for large brains, complex sociality, and coordinated predatory tactics. Here we tested imitative learning in killer whales, Orcinus orca. We used a 'do-as-other-does' paradigm in which 3 subjects witnessed a conspecific demonstrator's performance that included 15 familiar and 4 novel behaviours. The three subjects (1) learned the copy command signal 'Do that' very quickly, that is, 20 trials on average; (2) copied 100 % of the demonstrator's familiar and novel actions; (3) achieved full matches in the first attempt for 8-13 familiar behaviours (out of 15) and for the 2 novel behaviours (out of 2) in one subject; and (4) took no longer than 8 trials to accurately copy any familiar behaviour, and no longer than 16 trials to copy any novel behaviour. This study provides experimental evidence for body imitation, including production imitation, in killer whales that is comparable to that observed in dolphins tested under similar conditions. These findings suggest that imitative learning may underpin some of the group-specific traditions reported in killer whales in the field.</p

    Phylogenetic Distribution and Identification of Fin-winged Fruits

    No full text
    corecore