16 research outputs found

    Inhibition of Post-Synaptic Kv7/KCNQ/M Channels Facilitates Long-Term Potentiation in the Hippocampus

    Get PDF
    Activation of muscarinic acetylcholine receptors (mAChR) facilitates the induction of synaptic plasticity and enhances cognitive function. In the hippocampus, M1 mAChR on CA1 pyramidal cells inhibit both small conductance Ca2+-activated KCa2 potassium channels and voltage-activated Kv7 potassium channels. Inhibition of KCa2 channels facilitates long-term potentiation (LTP) by enhancing Ca2+calcium influx through postsynaptic NMDA receptors (NMDAR). Inhibition of Kv7 channels is also reported to facilitate LTP but the mechanism of action is unclear. Here, we show that inhibition of Kv7 channels with XE-991 facilitated LTP induced by theta burst pairing at Schaffer collateral commissural synapses in rat hippocampal slices. Similarly, negating Kv7 channel conductance using dynamic clamp methodologies also facilitated LTP. Negation of Kv7 channels by XE-991 or dynamic clamp did not enhance synaptic NMDAR activation in response to theta burst synaptic stimulation. Instead, Kv7 channel inhibition increased the amplitude and duration of the after-depolarisation following a burst of action potentials. Furthermore, the effects of XE-991 were reversed by re-introducing a Kv7-like conductance with dynamic clamp. These data reveal that Kv7 channel inhibition promotes NMDAR opening during LTP induction by enhancing depolarisation during and after bursts of postsynaptic action potentials. Thus, during the induction of LTP M1 mAChRs enhance NMDAR opening by two distinct mechanisms namely inhibition of KCa2 and Kv7 channels

    Meningitic Escherichia coli K1 Penetration and Neutrophil Transmigration Across the Blood–Brain Barrier are Modulated by Alpha7 Nicotinic Receptor

    Get PDF
    Alpha7 nicotinic acetylcholine receptor (nAChR), an essential regulator of inflammation, is abundantly expressed in hippocampal neurons, which are vulnerable to bacterial meningitis. However, it is unknown whether α7 nAChR contributes to the regulation of these events. In this report, an aggravating role of α7 nAChR in host defense against meningitic E. coli infection was demonstrated by using α7-deficient (α7-/-) mouse brain microvascular endothelial cells (BMEC) and animal model systems. As shown in our in vitro and in vivo studies, E. coli K1 invasion and polymorphonuclear neutrophil (PMN) transmigration across the blood-brain barrier (BBB) were significantly reduced in α7-/- BMEC and α7-/- mice. Stimulation by nicotine was abolished in the α7-/- cells and animals. The same blocking effect was achieved by methyllycaconitine (α7 antagonist). The tight junction molecules occludin and ZO-1 were significantly reduced in the brain cortex of wildtype mice infected with E. coli and treated with nicotine, compared to α7-/- cells and animals. Decreased neuronal injury in the hippocampal dentate gyrus was observed in α7-/- mice with meningitis. Proinflammatory cytokines (IL-1β, IL-6, TNFα, MCP-1, MIP-1alpha, and RANTES) and adhesion molecules (CD44 and ICAM-1) were significantly reduced in the cerebrospinal fluids of the α7-/- mice with E. coli meningitis. Furthermore, α7 nAChR is the major calcium channel for nicotine- and E. coli K1-increased intracellular calcium concentrations of mouse BMEC. Taken together, our data suggest that α7 nAChR plays a detrimental role in the host defense against meningitic infection by modulation of pathogen invasion, PMN recruitment, calcium signaling and neuronal inflammation

    Developmental Hippocampal Neuroplasticity in a Model of Nicotine Replacement Therapy during Pregnancy and Breastfeeding

    Get PDF
    The influence of developmental nicotine exposure on the brain represents an important health topic in light of the popularity of nicotine replacement therapy (NRT) as a smoking cessation method during pregnancy.In this study, we used a model of NRT during pregnancy and breastfeeding to explore the consequences of chronic developmental nicotine exposure on cerebral neuroplasticity in the offspring. We focused on two dynamic lifelong phenomena in the dentate gyrus (DG) of the hippocampus that are highly sensitive to the environment: granule cell neurogenesis and long-term potentiation (LTP).Pregnant rats were implanted with osmotic mini-pumps delivering either nicotine or saline solutions. Plasma nicotine and metabolite levels were measured in dams and offspring. Corticosterone levels, DG neurogenesis (cell proliferation, survival and differentiation) and glutamatergic electrophysiological activity were measured in pups.Juvenile (P15) and adolescent (P41) offspring exposed to nicotine throughout prenatal and postnatal development displayed no significant alteration in DG neurogenesis compared to control offspring. However, NRT-like nicotine exposure significantly increased LTP in the DG of juvenile offspring as measured in vitro from hippocampal slices, suggesting that the mechanisms underlying nicotine-induced LTP enhancement previously described in adult rats are already functional in pups.These results indicate that synaptic plasticity is disrupted in offspring breastfed by dams passively exposed to nicotine in an NRT-like fashion

    Transient Expression of Acetylcholinesterase in the Posterior Ventral Cochlear Nucleus of Rat Brain

    No full text
    In this report we partially characterize a pathway projecting to the posterior ventral cochlear nucleus (PVCN) of the rat brain that transiently expresses a high level of acetylcholinesterase (AChE). The AChE-positive axons form a network that envelops a discrete region of the PVCN that includes the octopus cell region and some cells rostral to it. AChE is first detectable by postnatal day 3 (P3), peaks in expression at about P7–10, and is barely detectable in our preparations by P15. We previously reported that neurons in the octopus cell region express high levels of α7 nAChR mRNA and α-bungarotoxin binding during the same time period. In light microscopic immunocytochemical studies using antibodies to the vesicular acetylcholine transporter (VAChT), we could not identify immunopositive boutons in the developing regions of the PVCN that express high levels of AChE-positive fibers despite distinct punctate labeling in other brain regions. Systematic electron microscopic examination of AChE histochemical staining throughout the PVCN revealed intense labeling of axons, but synaptic sites were devoid of reaction product. The source of the AChE-positive fibers is not known, but the fibers are not auditory nerve axons and probably not collaterals of the olivocochlear bundle

    Muscarinic receptors induce LTD of NMDAR EPSCs via a mechanism involving hippocalcin, AP2 and PSD-95

    No full text
    International audienceAlthough muscarinic acetylcholine receptors (mAChRs) and N-methyl-D-aspartate receptors (NMDARs) are of critical importance in synaptic plasticity, learning and memory, how they interact is poorly understood. We show that stimulation of muscarinic receptors, either by an agonist or by the synaptic release of acetylcholine, leads to long-term depression (LTD) of NMDAR-mediated synaptic transmission. This novel form of LTD involves the release of Ca2+ from IP3-sensitive intracellular stores and is expressed via the internalisation of NMDARs. We present evidence that the molecular mechanism involves a dynamic interaction between the neuronal calcium sensor protein hippocalcin, the clathrin adaptor molecule AP2, the postsynaptic density enriched protein PSD-95 and NMDARs. We propose that under basal conditions hippocalcin binds to the SH3 region of PSD-95 but on sensing Ca2+ it translocates to the plasma membrane; in doing so it causes PSD-95 to dissociate from NMDARs so permitting AP2 to bind and initiate their dynamin-dependent endocytosis

    An acetylcholine-activated microcircuit drives temporal dynamics of cortical activity

    No full text
    Cholinergic modulation of cortex powerfully influences information processing and brain states, causing robust desynchronization of local field potentials and strong decorrelation of responses between neurons. We found that intracortical cholinergic inputs to mouse visual cortex specifically and differentially drive a defined cortical microcircuit: they facilitate somatostatin-expressing (SOM) inhibitory neurons that in turn inhibit parvalbumin-expressing inhibitory neurons and pyramidal neurons. Selective optogenetic inhibition of SOM responses blocked desynchronization and decorrelation, demonstrating that direct cholinergic activation of SOM neurons is necessary for this phenomenon. Optogenetic inhibition of vasoactive intestinal peptide-expressing neurons did not block desynchronization, despite these neurons being activated at high levels of cholinergic drive. Direct optogenetic SOM activation, independent of cholinergic modulation, was sufficient to induce desynchronization. Together, these findings demonstrate a mechanistic basis for temporal structure in cortical populations and the crucial role of neuromodulatory drive in specific inhibitory-excitatory circuits in actively shaping the dynamics of neuronal activity.Singapore. Agency for Science, Technology and Research (Fellowship)National Institutes of Health (U.S.) (Grant R01EY007023)National Institutes of Health (U.S.) (Grant R01EY018648)National Institutes of Health (U.S.) (Grant U01NS090473)National Science Foundation (U.S.) (Grant EF1451125)Simons Foundatio
    corecore