1,815 research outputs found

    Effects of strong magnetic fields on the population of hyperon stars

    Full text link
    In this contribution we study the effects of strong magnetic fields on the particle population of neutron stars with hyperon degrees of freedom in their composition. The star matter is described by a multi-component model with parameterized baryon-meson interaction couplings. We study the magnetic effects on the equation of state (EoS) due to the Landau quantization, assuming a density dependent static magnetic field that reaches about 1019G10^{19}\,G in the center of the star. The Tolman-Oppenheimer-Volkoff equations are solved in order to understand the dependence of the mass-radius relation and hyperon population on the magnetic field intensity assuming different interaction coupling schemes.Comment: Prepared for conference STARS2013 - 2nd Caibbean Symposium on Cosmology, Gravitaion, Nuclear and Astroparticle Physics / SMFNS2013 - 3rd International Symposium on Strong Electromagnetic Fields and Neutron Star

    Questioning the validity of non-extensive thermodynamics for classical Hamiltonian systems

    Full text link
    We examine the non-extensive approach to the statistical mechanics of Hamiltonian systems with H=T+VH=T+V where TT is the classical kinetic energy. Our analysis starts from the basics of the formalism by applying the standard variational method for maximizing the entropy subject to the average energy and normalization constraints. The analytical results show (i) that the non-extensive thermodynamics formalism should be called into question to explain experimental results described by extended exponential distributions exhibiting long tails, i.e. qq-exponentials with q>1q>1, and (ii) that in the thermodynamic limit the theory is only consistent in the range 0q10\leq q\leq1 where the distribution has finite support, thus implying that configurations with e.g. energy above some limit have zero probability, which is at variance with the physics of systems in contact with a heat reservoir. We also discuss the (qq-dependent) thermodynamic temperature and the generalized specific heat.Comment: To appear in EuroPhysics Letter

    Some thoughts about nonequilibrium temperature

    Full text link
    The main objective of this paper is to show that, within the present framework of the kinetic theoretical approach to irreversible thermodynamics, there is no evidence that provides a basis to modify the ordinary Fourier equation relating the heat flux in a non-equilibrium steady state to the gradient of the local equilibrium temperature. This fact is supported, among other arguments, through the kinetic foundations of generalized hydrodynamics. Some attempts have been recently proposed asserting that, in the presence of non-linearities of the state variables, such a temperature should be replaced by the non-equilibrium temperature as defined in Extended Irreversible Thermodynamics. In the approximations used for such a temperature there is so far no evidence that sustains this proposal.Comment: 13 pages, TeX, no figures, to appear in Mol. Phy
    corecore