70 research outputs found
No evidence for selective follicle abortion underlying primary sex ratio adjustment in pigeons
Primary sex ratio adjustment in birds has been extensively studied, yet the underlying physiological mechanisms are far from understood. Avian females are the heterogametic sex (ZW), and the future sex of the offspring is determined at chromosome segregation during meiosis I, shortly before the oocyte is ovulated. Assuming that the mother can detect the sex of the developing oocyte before ovulation, it has been suggested that a follicle of the un-preferred sex could selectively be induced to become atretic and regress instead of being ovulated (selective follicle abortion). This potential mechanism has been proposed to underlie biased primary sex ratios in birds, including the homing pigeon (Columba livia domestica), which produces a modal clutch size of two eggs. However, without replacement by an additional, already mature follicle, abortion of a preovulatory follicle would most likely result in either reduced clutch sizes or laying gaps, since a not-yet-recruited follicle still needed to undergo the whole maturation phase. In the current study we killed female pigeons, which were adjusting embryo sex of first eggs according to change in body mass. We examined ovaries for signs of follicle abortion but did not find any supporting evidence. All females produced one or two mature follicles but only two out of the 56 experimental birds produced an additional third mature follicle. Therefore, our results do not corroborate the hypothesis that pigeon mothers manipulate primary offspring sex by selectively aborting follicles of the un-preferred sex
New Insights in the Contribution of Voltage-Gated Nav Channels to Rat Aorta Contraction
BACKGROUND: Despite increasing evidence for the presence of voltage-gated Na(+) channels (Na(v)) isoforms and measurements of Na(v) channel currents with the patch-clamp technique in arterial myocytes, no information is available to date as to whether or not Na(v) channels play a functional role in arteries. The aim of the present work was to look for a physiological role of Na(v) channels in the control of rat aortic contraction. METHODOLOGY/PRINCIPAL FINDINGS: Na(v) channels were detected in the aortic media by Western blot analysis and double immunofluorescence labeling for Na(v) channels and smooth muscle alpha-actin using specific antibodies. In parallel, using real time RT-PCR, we identified three Na(v) transcripts: Na(v)1.2, Na(v)1.3, and Na(v)1.5. Only the Na(v)1.2 isoform was found in the intact media and in freshly isolated myocytes excluding contamination by other cell types. Using the specific Na(v) channel agonist veratridine and antagonist tetrodotoxin (TTX), we unmasked a contribution of these channels in the response to the depolarizing agent KCl on rat aortic isometric tension recorded from endothelium-denuded aortic rings. Experimental conditions excluded a contribution of Na(v) channels from the perivascular sympathetic nerve terminals. Addition of low concentrations of KCl (2-10 mM), which induced moderate membrane depolarization (e.g., from -55.9+/-1.4 mV to -45.9+/-1.2 mV at 10 mmol/L as measured with microelectrodes), triggered a contraction potentiated by veratridine (100 microM) and blocked by TTX (1 microM). KB-R7943, an inhibitor of the reverse mode of the Na(+)/Ca(2+) exchanger, mimicked the effect of TTX and had no additive effect in presence of TTX. CONCLUSIONS/SIGNIFICANCE: These results define a new role for Na(v) channels in arterial physiology, and suggest that the TTX-sensitive Na(v)1.2 isoform, together with the Na(+)/Ca(2+) exchanger, contributes to the contractile response of aortic myocytes at physiological range of membrane depolarization
Identification of Protein Networks Involved in the Disease Course of Experimental Autoimmune Encephalomyelitis, an Animal Model of Multiple Sclerosis
A more detailed insight into disease mechanisms of multiple sclerosis (MS) is crucial for the development of new and more effective therapies. MS is a chronic inflammatory autoimmune disease of the central nervous system. The aim of this study is to identify novel disease associated proteins involved in the development of inflammatory brain lesions, to help unravel underlying disease processes. Brainstem proteins were obtained from rats with MBP induced acute experimental autoimmune encephalomyelitis (EAE), a well characterized disease model of MS. Samples were collected at different time points: just before onset of symptoms, at the top of the disease and following recovery. To analyze changes in the brainstem proteome during the disease course, a quantitative proteomics study was performed using two-dimensional difference in-gel electrophoresis (2D-DIGE) followed by mass spectrometry. We identified 75 unique proteins in 92 spots with a significant abundance difference between the experimental groups. To find disease-related networks, these regulated proteins were mapped to existing biological networks by Ingenuity Pathway Analysis (IPA). The analysis revealed that 70% of these proteins have been described to take part in neurological disease. Furthermore, some focus networks were created by IPA. These networks suggest an integrated regulation of the identified proteins with the addition of some putative regulators. Post-synaptic density protein 95 (DLG4), a key player in neuronal signalling and calcium-activated potassium channel alpha 1 (KCNMA1), involved in neurotransmitter release, are 2 putative regulators connecting 64% of the identified proteins. Functional blocking of the KCNMA1 in macrophages was able to alter myelin phagocytosis, a disease mechanism highly involved in EAE and MS pathology. Quantitative analysis of differentially expressed brainstem proteins in an animal model of MS is a first step to identify disease-associated proteins and networks that warrant further research to study their actual contribution to disease pathology
Recommended from our members
Early intervention with Bifidobacterium lactis NCC2818 modulates the host-microbe interface independent of the sustained changes induced by the neonatal environment
Inflammatory and metabolic diseases can originate during early-life and have been correlated with shifts in intestinal microbial ecology. Here we demonstrate that minor environmental fluctuations during the early neonatal period had sustained effects on the developing porcine microbiota and host-microbe interface. These inter-replicate effects appear to originate during the first day of life, and are likely to reflect very early microbiota acquisition from the environment. We statistically link early systemic inflammation with later local increases in inflammatory cytokine (IL-17) production, which could have important enteric health implications. Immunity, intestinal barrier function, host metabolism and host-microbiota co-metabolism were further modified by Bifidobacterium lactis NCC2818 supplementation, although composition of the in situ microbiota remained unchanged. Finally, our robust model identified novel, strong correlations between urinary metabolites (eg malonate, phenylacetylglycine, alanine) and mucosal immunoglobulin (IgM) and cytokine (IL-10, IL-4) production, thus providing the possibility of the development of urinary ‘dipstick’ tests to assess non-accessible mucosal immune development and identify early precursors (biomarkers) of disease. These results have important implications for infants exposed to neonatal factors including caesarean delivery, antibiotic therapy and delayed discharge from hospital environments, which may predispose to the development of inflammatory and metabolic diseases in later life
2D-DIGE as a strategy to identify serum biomarkers in Mexican patients with Type-2 diabetes with different body mass index
"Obesity and type 2 diabetes (T2D) are the most prevalent and serious metabolic diseases affecting people worldwide. However racial and ethnic disparities seems to be a risk factor for their development. Mexico has been named as one of the largest populations with the highest prevalence of diabetes and obesity. The aim of this study was to identify novel T2D-associated proteins in Mexican patients. Blood samples were collected from 62 Mexican patients with T2D and they were grouped according to their body mass index (BMI). A panel of 10 diabetes and obesity serum markers was determined using MAGPIX. A comparative proteomics study was performed using two-dimensional difference in-gel electrophoresis (2D-DIGE) followed by mass spectrometry (LC-MS/MS). We detected 113 spots differentially accumulated, in which 64 unique proteins were identified, proteins that were involved in metabolism pathways, molecular transport, and cellular signalling. Four proteins (14-3-3, ApoH, ZAG, and OTO3) showing diabetes-related variation and also changes in relation to obesity were selected for further validation by western blotting. Our results reveal new diabetes related proteins present in the Mexican population. These could provide additional insight into the understanding of diabetes development in Mexican population and may also be useful candidate biomarkers.
- …