993 research outputs found

    A simple model of unbounded evolutionary versatility as a largest-scale trend in organismal evolution

    Get PDF
    The idea that there are any large-scale trends in the evolution of biological organisms is highly controversial. It is commonly believed, for example, that there is a large-scale trend in evolution towards increasing complexity, but empirical and theoretical arguments undermine this belief. Natural selection results in organisms that are well adapted to their local environments, but it is not clear how local adaptation can produce a global trend. In this paper, I present a simple computational model, in which local adaptation to a randomly changing environment results in a global trend towards increasing evolutionary versatility. In this model, for evolutionary versatility to increase without bound, the environment must be highly dynamic. The model also shows that unbounded evolutionary versatility implies an accelerating evolutionary pace. I believe that unbounded increase in evolutionary versatility is a large-scale trend in evolution. I discuss some of the testable predictions about organismal evolution that are suggested by the model

    Parting the Mists

    Get PDF
    Wong, Aida Yuen. 2006. Parting the Mists, Discovering Japan and the Rise of National-Style Painting in Modern China. Series: Asian Interactions and Comparisons Honolulu: University of Hawai’i Press. ISBN 978 o 8248 2952

    Neural basis of positive and negative emotion regulation in remitted depression

    Get PDF
    The recurrent nature of Major Depressive Disorder (MDD) necessitates a better understanding of mechanisms facilitating relapse. MDD has often been associated with abnormal emotion regulation, underpinned by aberrant interactions between the prefrontal cortex and subcortical areas. We assessed whether neural regulation abnormalities remain after remission and relate to emotion regulation problems in daily life. At the baseline measurement of a randomized controlled trial, an emotion regulation task was performed during fMRI scanning by 46 remitted recurrent (rrMDD) patients and 24 healthy controls. We assessed both fMRI peak activity and the temporal dynamics of the neural response during passive attendance and explicit regulation of positive and negative emotions. Furthermore, we assessed regulation strategy use in daily life using questionnaires, and attentional biases using a modified attentional dot-probe task. RrMDD patients showed lower activation and different temporal dynamics in occipital, parietal, and prefrontal brain regions during passive attendance of emotional material compared to healthy controls. During explicit downregulation of negative emotions, no group differences were found. However, during explicit upregulation of positive emotions, rrMDD patients showed a different neural response over time in the insula. Behaviourally, rrMDD patients were characterized by dysfunctional regulation strategies in daily life. Within rrMDD patients, rumination was associated with activation within a limbic- prefrontal network. After remission, immediate emotional processing seems unaffected, but regulatory abnormalities remain, especially uninstructed and in daily life. Abnormal insula activation during positive upregulation suggests decreased monitoring of positive emotions. The relation between inadequate rumination and brain activity during emotion regulation suggests that regulation of both positive and negative affect is important in understanding neurocognitive underpinnings of resilience

    Neurocognitive working mechanisms of the prevention of relapse in remitted recurrent depression (NEWPRIDE):protocol of a randomized controlled neuroimaging trial of preventive cognitive therapy

    Get PDF
    Background: Major Depressive Disorder (MDD) is a psychiatric disorder with a highly recurrent character, making prevention of relapse an important clinical goal. Preventive Cognitive Therapy (PCT) has been proven effective in preventing relapse, though not for every patient. A better understanding of relapse vulnerability and working mechanisms of preventive treatment may inform effective personalized intervention strategies. Neurocognitive models of MDD suggest that abnormalities in prefrontal control over limbic emotion-processing areas during emotional processing and regulation are important in understanding relapse vulnerability. Whether changes in these neurocognitive abnormalities are induced by PCT and thus play an important role in mediating the risk for recurrent depression, is currently unclear. In the Neurocognitive Working Mechanisms of the Prevention of Relapse In Depression (NEWPRIDE) study, we aim to 1) study neurocognitive factors underpinning the vulnerability for relapse, 2) understand the neurocognitive working mechanisms of PCT, 3) predict longitudinal treatment effects based on pre-treatment neurocognitive characteristics, and 4) validate the pupil dilation response as a marker for prefrontal activity, reflecting emotion regulation capacity and therapy success. Methods: In this randomized controlled trial, 75 remitted recurrent MDD (rrMDD) patients will be included. Detailed clinical and cognitive measurements, fMRI scanning and pupillometry will be performed at baseline and three-month follow-up. In the interval, 50 rrMDD patients will be randomized to eight sessions of PCT and 25 rrMDD patients to a waiting list. At baseline, 25 healthy control participants will be additionally included to objectify cross-sectional residual neurocognitive abnormalities in rrMDD. After 18 months, clinical assessments of relapse status are performed to investigate which therapy induced changes predict relapse in the 50 patients allocated to PCT. Discussion: The present trial is the first to study the neurocognitive vulnerability factors underlying relapse and mediating relapse prevention, their value for predicting PCT success and whether pupil dilation acts as a valuable marker in this regard. Ultimately, a deeper understanding of relapse prevention could contribute to the development of better targeted preventive interventions. Trial registration: Trial registration: Netherlands Trial Register, August 18, 2015, trial number NL5219

    Avalanche dynamics in Bak-Sneppen evolution model observed with standard distribution width of fitness

    Full text link
    We introduce the standard distribution width of fitness to characterize the global and individual features of a ecosystem in the Bak-Sneppen evolution model. Through tracking this quantity in evolution, a different hierarchy of avalanche dynamics, w0w_{0} avalanche is observed. The corresponding gap equation and the self-organized threshold wcw_{c} are obtained. The critical exponents τ,\tau , γ\gamma and ρ\rho , which describe the behavior of the avalanche size distribution, the average avalanche size and the relaxation to attractor, respectively, are calculated with numerical simulation. The exact master equation and γ\gamma equation are derived. And the scaling relations are established among the critical exponents of this new avalanche.Comment: 14 pages, 3 figure

    A Universal Lifetime Distribution for Multi-Species Systems

    Full text link
    Lifetime distributions of social entities, such as enterprises, products, and media contents, are one of the fundamental statistics characterizing the social dynamics. To investigate the lifetime distribution of mutually interacting systems, simple models having a rule for additions and deletions of entities are investigated. We found a quite universal lifetime distribution for various kinds of inter-entity interactions, and it is well fitted by a stretched-exponential function with an exponent close to 1/2. We propose a "modified Red-Queen" hypothesis to explain this distribution. We also review empirical studies on the lifetime distribution of social entities, and discussed the applicability of the model.Comment: 10 pages, 6 figures, Proceedings of Social Modeling and Simulations + Econophysics Colloquium 201

    Error Thresholds on Dynamic Fittness-Landscapes

    Get PDF
    In this paper we investigate error-thresholds on dynamics fitness-landscapes. We show that there exists both lower and an upper threshold, representing limits to the copying fidelity of simple replicators. The lower bound can be expressed as a correction term to the error-threshold present on a static landscape. The upper error-threshold is a new limit that only exists on dynamic fitness-landscapes. We also show that for long genomes on highly dynamic fitness-landscapes there exists a lower bound on the selection pressure needed to enable effective selection of genomes with superior fitness independent of mutation rates, i.e., there are distinct limits to the evolutionary parameters in dynamic environments.Comment: 5 page
    corecore