154 research outputs found
Remediation of PAH-Contaminated Soils: Experimental Analysis and Modeling of Hydrodynamics and Mass Transfer in a Soil-Slurry Bioreactor
Extended Abstract Polycyclic Aromatic Hydrocarbon (PAHs)-contaminated soils are a great environmental and public health concern nowadays. Their remediation is an important field of research as several remediation techniques have been developed with the purpose of removing PAHs from soil. However, further researches are necessary to develop environmental friendly biotechnologies that allows public and private sectors to implement efficient and adaptable treatments for contaminated soils. Aerobic soil-slurry bioreactor technology has emerged as one of these technologies with high potential as an effective and feasible treatment technic for PAH-contaminated soils. For this treatment, soil is excavated, conditioned and loaded into an aerated aqueous bioreactor. Then, mechanical and/or pneumatic mixing maintains aerobic conditions and homogeneity. Furthermore, air supply and mixing represent the most energy intensive units Although, extensive research has been done on this topic, mechanisms involved in the removal of PAHs from soil are still not completely understood. In addition to the biological processes involved, important mass transfer mechanisms need to be considered (oxygen gas-liquid mass transfer, adsorption-desorption, volatilization of PAH, etc.). In general, even for volatile PAHs, volatilization is not considered in the studies whereas, in some conditions (high aeration rate), it can be a major mechanism of "PAH removal". The soil composition and concentration in the reactor should influence strongly the fluid viscosity, which is a key parameter governing the hydrodynamics and thus the mass transfer phenomena. Therefore, the aeration and mixing optimization requires a fine understanding of how different operational parameters influence the mixing and mass transfer mechanisms involved in the removal of PAHs from soil In this study, the influence of soil content (composition and concentrations) and operating conditions (air superficial velocity, stirring rate, etc.) on the mixing (rheology, etc.) and mass transfer phenomena (gas-liquid, adsorption-desorption) is addressed. Experiments are performed in a glass standard bioreactor designed to control hydrodynamic conditions and temperature. Air is injected from the bottom through a porous glass sparger. Mechanical agitation is performed by a marine propeller connected to a motor. Hydrodynamic parameters are monitored in order to study their influence on the process and, particularly on the oxygen and PAH transfer phenomena. Rheological behavior of soil/water matrix has been measured with a capillary rheometer The oxygen transfer tests showed that for a given air superficial velocity and stirring rate, the oxygen transfer coefficient in soil/water matrix is reduced in comparison with clean water results. This decrease depends on the soil composition and was more pronounced with an increase in the soil content. Moreover, the soil/water matrix could be assimilated to a non-Newtonian fluid with shear-thinning behavior (mainly pronounced for high soil content). The impact
Position Paper on Water, Energy, Food and Ecosystem (WEFE) Nexus and Sustainable development Goals (SDGs)
The EU and the international community is realising that the Water, Energy, Food and Ecosystem components are interlinked and require a joint planning in order to meet the daunting global challenges related to Water, Energy and Food security and maintaining the ecosystem health and in this way, reach the SDGs. If not dealt with, the world will not be able to meet the demand for water, energy and food in a not too far future and, in any case, in a not sustainable way. The strain on the ecosystems resulting from unsustainable single-sector planning will lead to increasing poverty, inequality and instability.
The Nexus approach is fully aligned with and supportive of the EU Consensus on Development. Key elements of the Consensus will require collaborative efforts across sectors in ways that can be supported/implemented by a Nexus approach. In this way, transparent and accountable decision-making, involving the civil society is key and common to the European Consensus on Development and the Nexus approach.
The Nexus approach will support the implementation of the SDG in particular SDG 2 (Food), SDG 6 (Water) and SDG 7 (Energy), but most SDGs have elements that link to food, water and energy in one or other way, and will benefit from a Nexus approach. The SDGs are designed to be cross-cutting and be implemented together, which is also reflected in a WEFE Nexus approach.
A Nexus approach offers a sustainable way of addressing the effects of Climate Change and increase resilience. The WEFE Nexus has in it the main drivers of climate change (water, energy and food security) and the main affected sectors (water and the environment). Decisions around policy, infrastructure, … developed based on the WEFE Nexus assessments will be suitable as elements of climate change mitigation and adaptation. In fact, it is difficult to imagine solutions to the climate change issue that are not built on a form of Nexus approach.
The Nexus approach is being implemented around the world, as examples in the literature demonstrate. These examples together with more examples from EU and member state development cooperation will help build experience that can be consolidated and become an important contribution to a Toolkit for WEFE Nexus Implementation. From the expert discussions, it appears that because of the novelty of the approach, a Toolkit will be an important element in getting the Nexus approach widely used. This should build on experiences from practical examples of NEXUS projects or similar inter-sectorial collaboration projects; and, there are already policy, regulation and practical experience to allow institutions and countries to start applying the Nexus concept.JRC.D.2-Water and Marine Resource
Leaching and selective recovery of Cu from printed circuit boards
Printed circuit boards (PCBs), a typical end-of-life electronic waste, were collected from an E-waste recycling company located in the Netherlands. Cu and precious metal concentration analyses of the powdered PCBs confirm that the PCBs are multimetallic in nature, rich, but contain high concentrations of Cu, Au, Ag, Pd, and Pt. Ferric sulfate concentration (100 mM), agitation speed (300 rpm), temperature (20 °C), and solid-to-liquid ratio (10 g·L−1) were found to be the optimum conditions for the maximum leaching of Cu from PCBs. The ferric sulfate leachates were further examined for selective recovery of Cu as copper sulfides. The important process variables of sulfide precipitation, such as lixiviant concentration and sulfide dosage were investigated and optimized 100 ppm of ferric sulfate and (copper:sulfide) 1:3 molar ratio, respectively. Over 95% of the dissolved Cu (from the multimetallic leachates) was selectively precipitated as copper sulfide under optimum conditions. The characterization of the copper sulfide precipitates by SEM-EDS analyses showed that the precipitates mainly consist of Cu and S. PCBs can thus be seen as a potential secondary resource for copper
- …