477 research outputs found

    Efficient solvability of Hamiltonians and limits on the power of some quantum computational models

    Full text link
    We consider quantum computational models defined via a Lie-algebraic theory. In these models, specified initial states are acted on by Lie-algebraic quantum gates and the expectation values of Lie algebra elements are measured at the end. We show that these models can be efficiently simulated on a classical computer in time polynomial in the dimension of the algebra, regardless of the dimension of the Hilbert space where the algebra acts. Similar results hold for the computation of the expectation value of operators implemented by a gate-sequence. We introduce a Lie-algebraic notion of generalized mean-field Hamiltonians and show that they are efficiently ("exactly") solvable by means of a Jacobi-like diagonalization method. Our results generalize earlier ones on fermionic linear optics computation and provide insight into the source of the power of the conventional model of quantum computation.Comment: 6 pages; no figure

    Tripartite to Bipartite Entanglement Transformations and Polynomial Identity Testing

    Full text link
    We consider the problem of deciding if a given three-party entangled pure state can be converted, with a non-zero success probability, into a given two-party pure state through local quantum operations and classical communication. We show that this question is equivalent to the well-known computational problem of deciding if a multivariate polynomial is identically zero. Efficient randomized algorithms developed to study the latter can thus be applied to the question of tripartite to bipartite entanglement transformations

    Classical simulation of noninteracting-fermion quantum circuits

    Get PDF
    We show that a class of quantum computations that was recently shown to be efficiently simulatable on a classical computer by Valiant corresponds to a physical model of noninteracting fermions in one dimension. We give an alternative proof of his result using the language of fermions and extend the result to noninteracting fermions with arbitrary pairwise interactions, where gates can be conditioned on outcomes of complete von Neumann measurements in the computational basis on other fermionic modes in the circuit. This last result is in remarkable contrast with the case of noninteracting bosons where universal quantum computation can be achieved by allowing gates to be conditioned on classical bits (quant-ph/0006088).Comment: 26 pages, 1 figure, uses wick.sty; references added to recent results by E. Knil

    Improved Simulation of Stabilizer Circuits

    Full text link
    The Gottesman-Knill theorem says that a stabilizer circuit -- that is, a quantum circuit consisting solely of CNOT, Hadamard, and phase gates -- can be simulated efficiently on a classical computer. This paper improves that theorem in several directions. First, by removing the need for Gaussian elimination, we make the simulation algorithm much faster at the cost of a factor-2 increase in the number of bits needed to represent a state. We have implemented the improved algorithm in a freely-available program called CHP (CNOT-Hadamard-Phase), which can handle thousands of qubits easily. Second, we show that the problem of simulating stabilizer circuits is complete for the classical complexity class ParityL, which means that stabilizer circuits are probably not even universal for classical computation. Third, we give efficient algorithms for computing the inner product between two stabilizer states, putting any n-qubit stabilizer circuit into a "canonical form" that requires at most O(n^2/log n) gates, and other useful tasks. Fourth, we extend our simulation algorithm to circuits acting on mixed states, circuits containing a limited number of non-stabilizer gates, and circuits acting on general tensor-product initial states but containing only a limited number of measurements.Comment: 15 pages. Final version with some minor updates and corrections. Software at http://www.scottaaronson.com/ch

    Set Similarity Search for Skewed Data

    Get PDF
    Set similarity join, as well as the corresponding indexing problem set similarity search, are fundamental primitives for managing noisy or uncertain data. For example, these primitives can be used in data cleaning to identify different representations of the same object. In many cases one can represent an object as a sparse 0-1 vector, or equivalently as the set of nonzero entries in such a vector. A set similarity join can then be used to identify those pairs that have an exceptionally large dot product (or intersection, when viewed as sets). We choose to focus on identifying vectors with large Pearson correlation, but results extend to other similarity measures. In particular, we consider the indexing problem of identifying correlated vectors in a set S of vectors sampled from {0,1}^d. Given a query vector y and a parameter alpha in (0,1), we need to search for an alpha-correlated vector x in a data structure representing the vectors of S. This kind of similarity search has been intensely studied in worst-case (non-random data) settings. Existing theoretically well-founded methods for set similarity search are often inferior to heuristics that take advantage of skew in the data distribution, i.e., widely differing frequencies of 1s across the d dimensions. The main contribution of this paper is to analyze the set similarity problem under a random data model that reflects the kind of skewed data distributions seen in practice, allowing theoretical results much stronger than what is possible in worst-case settings. Our indexing data structure is a recursive, data-dependent partitioning of vectors inspired by recent advances in set similarity search. Previous data-dependent methods do not seem to allow us to exploit skew in item frequencies, so we believe that our work sheds further light on the power of data dependence

    On the Usability of Probably Approximately Correct Implication Bases

    Full text link
    We revisit the notion of probably approximately correct implication bases from the literature and present a first formulation in the language of formal concept analysis, with the goal to investigate whether such bases represent a suitable substitute for exact implication bases in practical use-cases. To this end, we quantitatively examine the behavior of probably approximately correct implication bases on artificial and real-world data sets and compare their precision and recall with respect to their corresponding exact implication bases. Using a small example, we also provide qualitative insight that implications from probably approximately correct bases can still represent meaningful knowledge from a given data set.Comment: 17 pages, 8 figures; typos added, corrected x-label on graph

    Balancing Bounded Treewidth Circuits

    Full text link
    Algorithmic tools for graphs of small treewidth are used to address questions in complexity theory. For both arithmetic and Boolean circuits, it is shown that any circuit of size nO(1)n^{O(1)} and treewidth O(login)O(\log^i n) can be simulated by a circuit of width O(logi+1n)O(\log^{i+1} n) and size ncn^c, where c=O(1)c = O(1), if i=0i=0, and c=O(loglogn)c=O(\log \log n) otherwise. For our main construction, we prove that multiplicatively disjoint arithmetic circuits of size nO(1)n^{O(1)} and treewidth kk can be simulated by bounded fan-in arithmetic formulas of depth O(k2logn)O(k^2\log n). From this we derive the analogous statement for syntactically multilinear arithmetic circuits, which strengthens a theorem of Mahajan and Rao. As another application, we derive that constant width arithmetic circuits of size nO(1)n^{O(1)} can be balanced to depth O(logn)O(\log n), provided certain restrictions are made on the use of iterated multiplication. Also from our main construction, we derive that Boolean bounded fan-in circuits of size nO(1)n^{O(1)} and treewidth kk can be simulated by bounded fan-in formulas of depth O(k2logn)O(k^2\log n). This strengthens in the non-uniform setting the known inclusion that SC0NC1SC^0 \subseteq NC^1. Finally, we apply our construction to show that {\sc reachability} for directed graphs of bounded treewidth is in LogDCFLLogDCFL

    Thermodynamics of Mesoscopic Vortex Systems in 1+1 Dimensions

    Full text link
    The thermodynamics of a disordered planar vortex array is studied numerically using a new polynomial algorithm which circumvents slow glassy dynamics. Close to the glass transition, the anomalous vortex displacement is found to agree well with the prediction of the renormalization-group theory. Interesting behaviors such as the universal statistics of magnetic susceptibility variations are observed in both the dense and dilute regimes of this mesoscopic vortex system.Comment: 4 pages, REVTEX, 6 figures included. Comments and suggestions can be sent to [email protected]
    corecore