1,483 research outputs found

    Relativistic gyratons in asymptotically AdS spacetime

    Full text link
    We study the gravitational field of a spinning radiation beam-pulse (a gyraton) in a D-dimensional asymptotically AdS spacetime. It is shown that the Einstein equations for such a system reduce to a set of two linear equations in a (D-2)-dimensional space. By solving these equations we obtain a metric which is an exact solution of gravitational equations with the (negative) cosmological constant. The explicit metrics for 4D and 5D gyratons in asymptotically AdS spacetime are given and their properties are discussed.Comment: 10 page

    String Gyratons in Supergravity

    Full text link
    We study solutions of the supergravity equations with the string-like sources moving with the speed of light. An exact solution is obtained for the gravitational field of a boosted ring string in any dimension greater than three.Comment: 7 pages;v2 minor changes & references added, final in PR

    Observable form of pulses emitted from relativistic collapsing objects

    Full text link
    In this work, we discuss observable characteristics of the radiation emitted from a surface of a collapsing object. We study a simplified model in which a radiation of massless particles has a sharp in time profile and it happens at the surface at the same moment of comoving time. Since the radiating surface has finite size the observed radiation will occur during some finite time. Its redshift and bending angle are affected by the strong gravitational field. We obtain a simple expression for the observed flux of the radiation as a function of time. To find an explicit expression for the flux we develop an analytical approximation for the bending angle and time delay for null rays emitted by a collapsing surface. In the case of the bending angle this approximation is an improved version of the earlier proposed Beloborodov-Leahy-approximation. For rays emitted at R>2RgR > 2R_g the accuracy of the proposed improved approximations for the bending angle and time delay is of order (or less) than 2-3%. By using this approximation we obtain an approximate analytical expression for the observed flux and study its properties.Comment: 13 pages, 10 figures;Typos in equations and refrences are corrected. No change in the results and discussion

    Gravitational field of relativistic gyratons

    Full text link
    The metric ansatz is used to describe the gravitational field of a beam-pulse of spinning radiation (gyraton) in an arbitrary number of spacetime dimensions D. First we demonstrate that this metric belongs to the class of metrics for which all scalar invariants constructed from the curvature and its covariant derivatives vanish. Next, it is shown that the vacuum Einstein equations reduce to two linear problems in (D-2)-dimensional Euclidean space. The first is to find the static magnetic potential created by a point-like source. The second requires finding the electric potential created by a point-like source surrounded by given distribution of the electric charge. To obtain a generic gyraton-type solution of the vacuum Einstein equations it is sufficient to allow the coefficients in the corresponding harmonic decompositions of solutions of the linear problems to depend arbitrarily on retarded time and substitute the obtained expressions in the metric ansatz. We discuss properties of the solutions for relativistic gyratons and consider special examples.Comment: 11 page

    Interaction of higher-dimensional rotating black holes with branes

    Full text link
    We study interaction of rotating higher dimensional black holes with a brane in space-times with large extra dimensions. We demonstrate that in a general case a rotating black hole attached to a brane can loose bulk components of its angular momenta. A stationary black hole can have only those components of the angular momenta which are connected with Killing vectors generating transformations preserving a position of the brane. In a final stationary state the null Killing vector generating the black hole horizon is tangent to the brane. We discuss first the interaction of a cosmic string and a domain wall with the 4D Kerr black hole. We then prove the general result for slowly rotating higher dimensional black holes interacting with branes. The characteristic time when a rotating black hole with the gravitational radius r0r_0 reaches this final stationary state is Tr0p1/(Gσ)T\sim r_0^{p-1}/(G\sigma), where GG is the higher dimensional gravitational coupling constant, σ\sigma is the brane tension, and pp is the number of extra dimensions.Comment: Version published in Class. Quant. Gra

    Scattering of a Long Cosmic String by a Rotating Black Hole

    Get PDF
    The scattering of a straight, infinitely long string by a rotating black hole is considered. We assume that a string is moving with velocity v and that initially the string is parallel to the axis of rotation of the black hole. We demonstrate that as a result of scattering, the string is displaced in the direction perpendicular to the velocity by an amount kappa(v,b), where b is the impact parameter. The late-time solution is represented by a kink and anti-kink, propagating in opposite directions at the speed of light, and leaving behind them the string in a new ``phase''. We present the results of the numerical study of the string scattering and their comparison with the weak-field approximation, valid where the impact parameter is large, b/M >> 1, and also with the scattering by a non-rotating black hole which was studied in earlier works.Comment: 27 pages, 14 figures, to be published in Classical and Quantum Gravit

    Gravitational field of charged gyratons

    Full text link
    We study relativistic gyratons which carry an electric charge. The Einstein-Maxwell equations in arbitrary dimensions are solved exactly in the case of a charged gyraton propagating in an asymptotically flat metric.Comment: 11 pages, some new comments and new references added. To appear in Classical and Quantum Gravit

    Transcribed ultraconserved noncoding RNAs (T-UCR) are involved in Barrett's esophagus carcinogenesis.

    Get PDF
    Barretts esophagus (BE) involves a metaplastic replacement of native esophageal squamous epithelium (Sq) by columnar-intestinalized mucosa, and it is the main risk factor for Barrett-related adenocarcinoma (BAc). Ultra-conserved regions (UCRs) are a class non-coding sequences that are conserved in humans, mice and rats. More than 90% of UCRs are transcribed (T-UCRs) in normal tissues, and are altered at transcriptional level in tumorigenesis. To identify the T-UCR profiles that are dysregulated in Barretts mucosa transformation, microarray analysis was performed on a discovery set of 51 macro-dissected samples obtained from 14 long-segment BE patients. Results were validated in an independent series of esophageal biopsy/surgery specimens and in two murine models of Barretts esophagus (i.e. esophagogastric-duodenal anastomosis). Progression from normal to BE to adenocarcinoma was each associated with specific and mutually exclusive T-UCR signatures that included up-regulation of uc.58-, uc.202-, uc.207-, and uc.223- and down-regulation of uc.214+. A 9 T-UCR signature characterized BE versus Sq (with the down-regulation of uc.161-, uc.165-, and uc.327-, and the up-regulation of uc.153-, uc.158-, uc.206-, uc.274-, uc.472-, and uc.473-). Analogous BE-specific T-UCR profiles were shared by human and murine lesions. This study is the first demonstration of a role for T-UCRs in the transformation of Barretts mucosa

    Hidden Symmetry of Higher Dimensional Kerr-NUT-AdS Spacetimes

    Get PDF
    It is well known that 4-dimensional Kerr-NUT-AdS spacetime possesses the hidden symmetry associated with the Killing-Yano tensor. This tensor is "universal" in the sense that there exist coordinates where it does not depend on any of the free parameters of the metric. Recently the general higher dimensional Kerr-NUT-AdS solutions of the Einstein equations were obtained. We demonstrate that all these metrics with arbitrary rotation and NUT parameters admit a universal Killing-Yano tensor. We give an explicit presentation of the Killing-Yano and Killing tensors and briefly discuss their properties.Comment: 4 pages, some discussion and references are adde

    Action and Hamiltonian for eternal black holes

    Full text link
    We present the Hamiltonian, quasilocal energy, and angular momentum for a spacetime region spatially bounded by two timelike surfaces. The results are applied to the particular case of a spacetime representing an eternal black hole. It is shown that in the case when the boundaries are located in two different wedges of the Kruskal diagram, the Hamiltonian is of the form H=H+HH = H_+ - H_-, where H+H_+ and HH_- are the Hamiltonian functions for the right and left wedges respectively. The application of the obtained results to the thermofield dynamics description of quantum effects in black holes is briefly discussed.Comment: 24 pages, Revtex, 5 figures (available upon request
    corecore