121 research outputs found

    Mechanical behavior of carbon/flax hybrid composites for structural applications

    Get PDF
    In this work, the influence of an unidirectional carbon fabric layer on the mechanical performances of bidirectional flax fabric/epoxy composites used for structural applications was studied. Two different bidirectional flax fabrics were used to produce flax fabric reinforced plastic (FFRP) laminates by a vacuum bagging process: one is normally used to make curtains; the other, heavier and more expensive than the previous one, is usually used as reinforcement in composite structures. In order to realize hybrid structures starting from FFRP, an unidirectional UHM carbon fabric was used to replace a bidirectional flax fabric. Tensile and three-point bending tests were performed to evaluate the mechanical properties of the laminates investigated (both FFRP and hybrids). Furthermore, the mechanical behavior of the different bidirectional flax fabrics was analyzed by carrying out tensile tests. The experimental tests showed that the structures reinforced with flax fabrics, normally used to make curtains, present better flexural properties than that of others while, in tensile configuration, these last show higher modulus and strength. Moreover, both FFRP laminates show low mechanical properties, which do not allow their use in structural applications while the presence of one external layer of unidirectional carbon involves remarkable increase in their properties. According to this study, the hybrid composites realized could be used in several structural applications (i.e., nautical and automotive)

    Visco-elastic behavior through fractional calculus: an easier method for best fitting experimental results

    Get PDF
    In capturing visco-elastic behavior, experimental tests play a fundamental rule, since they allow to build up theoretical constitutive laws very useful for simulating their own behavior. The main challenge is representing the visco-elastic materials through simple models, in order to spread their use. However, the wide used models for capturing both relaxation and creep tests are combinations of simple models as Maxwell and/or Kelvin, that depend on several parameters for fitting both creep and relaxation tests. This paper, following Nutting and Gemant idea of fitting experimental data through a power law function, aims at stressing the validity of fractional model. In fact, as soon as relaxation test is well fitted by power law decay then the fractional constitutive law involving Caputo’s derivative directly appears. It will be shown that fractional model is proper for studying visco-elastic behavior, since it may capture both relaxation and creep tests, requiring the identification of two parameters only. This consideration is assessed by the good agreement between experimental tests on creep and relaxation and the fractional model proposed. Experimental tests, here reported are performed on two polymers having different chemical physical properties such that the fractional model may cover a wide range of visco-elastic behavior

    Materiali e tecniche innovative per l’edilizia sostenibile

    Get PDF
    Climate change and the need to reduce energy consumption in buildings are key topics in the political, scientific, economic and cultural debate. Since the academic year, 2010-2011, we wanted to make a debate and also our contribution with the first edition of the Master in Materials and Innovative Techniques for Sustainable Construction (MeTIES) University of Palermo together with the University Consortium for the University of Western Sicily and the Mediterranean Basin (UNISOM). The main objective of this Master is to form a professional generation who knows how to master new technologies and to rethink the way to "build". All the students of the master, in different editions, have had the opportunity to improve skills acquired during the course in workplace. The aim was to contribute to the debate on possible ways to pursue sustainable development through the training of "operators" who have the ability to identify, develop and propose possible and concrete solutions for the energy efficiency of buildings. The book contains some solutions to the needs of a sector that will be increasingly at the center of the economic and political choices of the coming decades

    Evaluation of aging behavior under salt-fog spray conditions of green sandwich structures

    Get PDF
    In this paper, the aging resistance of sandwich structures made with cork agglomerate as core and flax-reinforced polymeric laminates as face sheets was investigated for the first time. In order to evaluate their durability in a hostile environment, a sandwich plate was manufactured by vacuum bagging technique and aged under salt-fog spray conditions, according to ASTM B 117 standard. The evolution of the sandwich mechanical properties during the aging exposition was analyzed by carrying out quasi-static flexural tests and Charpy impact tests both on unaged specimens and on specimens aged for 10, 25, and 60 days, respectively. The quasi-static experimental results showed that despite the salt-fog exposition leads to clear decrements in both maximum strength and modulus, the deformation capability of the sandwich structure evidences a noticeable improvement. According to this last result, it was found that the impact strength of the sandwich specimens was clearly increased after the salt-fog exposition evidencing that the studied green sandwich maintains good toughness properties in a hostile environment such as marine

    Modelling of phase transitions and residual thermal stress of CTBN rubber modified epoxy resins during a pultrusion process

    No full text
    The implicit finite difference and fourth order Runge-Kutta method are used both to solve the heat transfer problem in the pultrusion reaction and to calculate the temperature and conversion distributions within a thermoset composite profile. The aim of our work is to study the influence of a rubbery phase added to the epoxy matrix in production conditions. The results have shown that the rubber modified systems have a low exothermic temperature peak value, so that neither the amount of cured resin nor the final product properties are limited. First of all we will show that the phase transition (gelation and vitrification) zones within the die change at varying the amount of rubber in the resin. Then the relationship between the position and of these zones and the resin systems will be discussed. At the end we will calculate the residual thermal stresses for all the investigated fibre/resin systems, evidencing their reduction when the rubber amount increases in the epoxy blend

    Epoxy resins as a matrix material in advanced fiber-reinforced polymer (FRP) composites

    No full text
    This chapter discusses the epoxy resins which, thanks to their good and versatile properties, can be considered nowadays the most important class of thermosetting polymers. In particular the chapter first reviews both the epoxy resins commonly available on the market, including a new class of bio-derived epoxy resins, and the most-used curing agents. It then describes the principal characteristics of the epoxy resins and how it is possible to enhance them by adding several fillers to the epoxy system. Finally, the chapter analyzes the main engineering fields in which epoxy resins find application today and their possible future utilization

    Effect of CTBN rubber inclusions on the curing kinetic of DGEBA-DGEBF epoxy resin

    No full text
    The curing kinetics of an epoxy resin matrix, based on diglycil ether of bisphenol A and F (DGEBA-DGEBF), associated with an anhydride hardener, at different carboxyl-terminated copolymer of butadiene and acrylonitrile liquid rubber (CTBN) concentration (0-10 phr) are studied using a differential scanning calorimetry (DSC) and a stress-controlled rheometer in isothermal and dynamic conditions. The aim of this work is to correlate the presence of the rubber phase with the transition phenomena that occur during the curing process. The CTBN rubber induces a catalytic effect on the polymerization of the pure resin clearly observed by a significant enhancement of the curing rate. Calorimetric and rheological analysis also evidences that gelation and vitrification times take place not punctually but in a wide range of time. Rheological data show that the presence of rubbery phase induces a higher rate of gel formation during the early stages of the reactions, confirming the calorimetric results. Finally the results are compared with theoretical models evidencing a good fitting between experimental and predictive data
    • …
    corecore