421 research outputs found

    Integrating multimodal Raman and photoluminescence microscopy with enhanced insights through multivariate analysis

    Get PDF
    This paper introduces a novel multimodal optical microscope, integrating Raman and laser-induced photoluminescence (PL) spectroscopy for the analysis of micro-samples relevant in Heritage Science. Micro-samples extracted from artworks, such as paintings, exhibit intricate material compositions characterized by high complexity and spatial heterogeneity, featuring multiple layers of paint that may be also affected by degradation phenomena. Employing a multimodal strategy becomes imperative for a comprehensive understanding of their material composition and condition. The effectiveness of the proposed setup derives from synergistically harnessing the distinct strengths of Raman and laser-induced PL spectroscopy. The capacity to identify various chemical species through the latter technique is enhanced by using multiple excitation wavelengths and two distinct excitation fluence regimes. The combination of the two complementary techniques allows the setup to effectively achieve comprehensive chemical mapping of sample through a raster scanning approach. To attain a competitive overall measurement time, we employ a short integration time for each measurement point. We further propose an analysis protocol rooted in a multivariate approach. Specifically, we employ non-negative matrix factorization as the spectral decomposition method. This enables the identification of spectral endmembers, effectively correlated with specific chemical compounds present in samples. To demonstrate its efficacy in Heritage Science, we present examples involving pigment powder dispersions and stratigraphic micro-samples from paintings. Through these examples, we show how the multimodal approach reinforces material identification and, more importantly, facilitates the extraction of complementary information. This is pivotal as the two optical techniques exhibit sensitivity to different materials. Looking ahead, our method holds potential applications in diverse research fields, including material science and biology

    A photoluminescence study of the changes induced in the zinc white pigment by formation of zinc complexes

    Get PDF
    It is known that oil paintings containing zinc white are subject to rapid degradation. This is caused by the interaction between the active groups of binder and the metal ions of the pigment, which gives rise to the formation of new zinc complexes (metal soaps). Ongoing studies on zinc white paints have been limited to the chemical mechanisms that lead to the formation of zinc complexes. On the contrary, little is known of the photo-physical changes induced in the zinc oxide crystal structure following this interaction. Time-resolved photoluminescence spectroscopy has been applied to follow modifications in the luminescent zinc white pigment when mixed with binder. Significant changes in trap state photoluminescence emissions have been detected: the enhancement of a blue emission combined with a change of the decay kinetic of the well-known green emission. Complementary data from molecular analysis of paints using Fourier transform infrared spectroscopy confirms the formation of zinc carboxylates and corroborates the mechanism for zinc complexes formation. We support the hypothesis that zinc ions migrate into binder creating novel vacancies, affecting the photoluminescence intensity and lifetime properties of zinc oxide. Here, we further demonstrate the advantages of a time-resolved photoluminescence approach for studying defects in semiconductor pigments

    PARP inhibitor ABT-888 affects response of MDA-MB-231 cells to doxorubicin treatment, targeting Snail expression

    Get PDF
    To overcome cancer cells resistance to pharmacological therapy, the development of new therapeutic approaches becomes urgent. For this purpose, the use of poly(ADP-ribose) polymerase (PARP) inhibitors in combination with other cytotoxic agents could represent an efficacious strategy. Poly(ADP-ribosyl)ation (PARylation) is a post-translational modification that plays a well characterized role in the cellular decisions of life and death. Recent findings indicate that PARP-1 may control the expression of Snail, the master gene of epithelial-mesenchymal transition (EMT). Snail is highly represented in different resistant tumors, functioning as a factor regulating anti-apoptotic programmes. MDA-MB-231 is a Snail-expressing metastatic breast cancer cell line, which exhibits chemoresistance properties when treated with damaging agents. In this study, we show that the PARP inhibitor ABT-888 was capable to modulate the MDA-MB-231 cell response to doxorubicin, leading to an increase in the rate of apoptosis. Our further results indicate that PARP-1 controlled Snail expression at transcriptional level in cells exposed to doxorubicin. Given the increasing interest in the employment of PARP inhibitors as chemotherapeutic adjuvants, our in vitro results suggest that one of the mechanisms through which PARP inhibition can chemosensitize cancer cells in vivo, is targeting Snail expression thus promoting apoptosi

    Time-resolved photoluminescence microscopy for the analysis of semiconductor-based paint layers

    Get PDF
    In conservation, science semiconductors occur as the constituent matter of the so-called semiconductor pigments, produced following the Industrial Revolution and extensively used by modern painters. With recent research highlighting the occurrence of various degradation phenomena in semiconductor paints, it is clear that their detection by conventional optical fluorescence imaging and microscopy is limited by the complexity of historical painting materials. Here, we illustrate and prove the capabilities of time-resolved photoluminescence (TRPL) microscopy, equipped with both spectral and lifetime sensitivity at timescales ranging from nanoseconds to hundreds of microseconds, for the analysis of cross-sections of paint layers made of luminescent semiconductor pigments. The method is sensitive to heterogeneities within micro-samples and provides valuable information for the interpretation of the nature of the emissions in samples. A case study is presented on micro samples from a painting by Henri Matisse and serves to demonstrate how TRPL can be used to identify the semiconductor pigments zinc white and cadmium yellow, and to inform future investigations of the degradation of a cadmium yellow paint

    Time-resolved photoluminescence spectroscopy and imaging: New approaches to the analysis of cultural heritage and its degradation

    Get PDF
    Applications of time-resolved photoluminescence spectroscopy (TRPL) and fluorescence lifetime imaging (FLIM) to the analysis of cultural heritage are presented. Examples range from historic wall paintings and stone sculptures to 20th century iconic design objects. A detailed description of the instrumentation developed and employed for analysis in the laboratory or in situ is given. Both instruments rely on a pulsed laser source coupled to a gated detection system, but differ in the type of information they provide. Applications of FLIM to the analysis of model samples and for the in-situ monitoring of works of art range from the analysis of organic materials and pigments in wall paintings, the detection of trace organic substances on stone sculptures, to the mapping of luminescence in late 19th century paintings. TRPL and FLIM are employed as sensors for the detection of the degradation of design objects made in plastic. Applications and avenues for future research are suggested

    ENGAJAMENTO MOTOR, CONTEXTO DA AULA E COMPORTAMENTO DO PROFESSOR EM AULAS DE EDUCAÇÃO FÍSICA DE CRIANÇAS DO ENSINO FUNDAMENTAL

    Get PDF
    As aulas de Educação Física são para a maioria das crianças o principal meio de participação em atividades estruturadas e apropriadas ao desenvolvimento e de promoção da atividade física. O contexto das aulas e a mediação do professor podem potencializar o engajamento dos alunos nas aulas. O objetivo do estudo foi investigar a qualidade do engajamento dos alunos nas aulas de educação física, o contexto das aulas e o comportamento do professor de cinco turmas do terceiro ano de escolas de ensino público. Foram observadas 20 aulas de cinco turmas do terceiro ano do ensino fundamental. Foi utilizado um instrumento observacional com categorias de engajamento motor adequado ou inadequado. Para investigar o contexto da aula e o comportamento do professor foi utilizado o System for Observing Fitness Instruction Time. Os resultados indicam que as crianças permaneciam a maior parte do tempo em comportamentos não engajado motoramente de forma adequada (39,4%), e engajado motoramente de forma adequada (31,5%). Os contextos predominantes das aulas foram de outros atividades (33,2%) e de prática da técnica (25,8%). Os comportamentos predominantes do professor foram de observar (32,9%) e de administração (26,1%). Conclui-se que as aulas de educação física proporcionam pouco tempo ativo, os contextos das aulas são de atividades com pouca mediação do professor, que por sua vez apresenta maior tendência a somente observar os alunos, sendo necessárias estratégias que proporcionem maior engajamento dos alunos
    corecore