4,802 research outputs found

    Near-Infrared Properties of Metal-poor Globular Clusters in the Galactic Bulge Direction

    Full text link
    Aims. J, H, and K' images obtained from the near-infrared imager CFHTIR on the Canada-France-Hawaii Telescope are used to derive the morphological parameters of the red giant branch (RGB) in the near-infrared color-magnitude diagrams for 12 metal-poor globular clusters in the Galactic bulge direction. Using the compiled data set of the RGB parameters for the observed 12 clusters, in addition to the previously studied 5 clusters, we discuss the properties of the RGB morphology for the clusters and compare them with the calibration relations for the metal-rich bulge clusters and the metal-poor halo clusters. Methods. The photometric RGB shape indices such as colors at fixed magnitudes of MK = MH = (-5.5, -5, -4, and -3), magnitudes at fixed colors of (J - K)o = (J - H)o = 0.7, and the RGB slope are measured from the fiducial normal points defined in the near- infrared color-magnitude diagrams for each cluster. The magnitudes of RGB bump and tip are also estimated from the differential and cumulative luminosity functions of the selected RGB stars. The derived RGB parameters have been used to examine the overall behaviors of the RGB morphology as a function of cluster metallicity. Results. The correlations between the near-infrared photometric RGB shape indices and the cluster metallicity for the programme clusters compare favorably with the previous observational calibration relations for metal-rich clusters in the Galactic bulge and the metal-poor halo clusters. The observed near-infrared magnitudes of the RGB bump and tip for the investigated clusters are also in accordance with the previous calibration relations for the Galactic bulge clusters.Comment: 12 pages, 9 figures, accepted for publication in Astronomy & Astrophysic

    Evidence for an unconventional magnetic instability in the spin-tetrahedra system Cu_2Te_2O_5Br_2

    Full text link
    Thermodynamic experiments as well as Raman scattering have been used to study the magnetic instabilities in the spin-tetrahedra systems Cu_2Te_2O_5X_2, X=Cl and Br. While the phase transition observed in the Cl system at T_o=18.2 K is consistent with 3D AF ordering, the phase transition at T_o=11.3 K in the Br system has several unusual features. We propose an explanation in terms of weakly coupled tetrahedra with a singlet-triplet gap and low lying singlets.Comment: 4 pages, 4 figure

    Mean Escape Time in a System with Stochastic Volatility

    Get PDF
    We study the mean escape time in a market model with stochastic volatility. The process followed by the volatility is the Cox Ingersoll and Ross process which is widely used to model stock price fluctuations. The market model can be considered as a generalization of the Heston model, where the geometric Brownian motion is replaced by a random walk in the presence of a cubic nonlinearity. We investigate the statistical properties of the escape time of the returns, from a given interval, as a function of the three parameters of the model. We find that the noise can have a stabilizing effect on the system, as long as the global noise is not too high with respect to the effective potential barrier experienced by a fictitious Brownian particle. We compare the probability density function of the return escape times of the model with those obtained from real market data. We find that they fit very well.Comment: 9 pages, 9 figures, to be published in Phys. Rev.

    Measuring the Magnetic Field on the Classical T Tauri Star TW Hydrae

    Full text link
    We present infrared (IR) and optical echelle spectra of the Classical T Tauri star TW Hydrae. Using the optical data, we perform detailed spectrum synthesis to fit atomic and molecular absorption lines and determine key stellar parameters: Teff = 4126 \pm 24 K, log g = 4.84 \pm 0.16, [M/H] = -0.10 \pm 0.12, vsini = 5.8 \pm 0.6 km/s. The IR spectrum is used to look for Zeeman broadening of photospheric absorption lines. We fit four Zeeman sensitive Ti I lines near 2.2 microns and find the average value of the magnetic field over the entire surface is 2.61 \pm 0.23 kG. In addition, several nearby magnetically insensitive CO lines show no excess broadening above that produced by stellar rotation and instrumental broadening, reinforcing the magnetic interpretation for the width of the Ti I lines. We carry out extensive tests to quantify systematic errors in our analysis technique which may result from inaccurate knowledge of the effective temperature or gravity, finding that reasonable errors in these quantities produce a 10% uncertainty in the mean field measurement.Comment: The tar file includes one Tex file and four .eps figures. The paper is accepted and tentatively scheduled for the ApJ 1 December 2005, v634, 2 issue. ApJ manuscript submission # 6310

    Effects of Two Energy Scales in Weakly Dimerized Antiferromagnetic Quantum Spin Chains

    Full text link
    By means of thermal expansion and specific heat measurements on the high-pressure phase of (VO)2_2P2_2O7_7, the effects of two energy scales of the weakly dimerized antiferromagnetic SS = 1/2 Heisenberg chain are explored. The low energy scale, given by the spin gap Δ\Delta, is found to manifest itself in a pronounced thermal expansion anomaly. A quantitative analysis, employing T-DMRG calculations, shows that this feature originates from changes in the magnetic entropy with respect to Δ\Delta, Sm/Δ\partial S^{m}/ \partial \Delta. This term, inaccessible by specific heat, is visible only in the weak-dimerization limit where it reflects peculiarities of the excitation spectrum and its sensitivity to variations in Δ\Delta.Comment: 4 pages, 4 figures now identical with finally published versio

    Spectropolarimetry of the Classical T Tauri Star TW Hydrae

    Get PDF
    We present high resolution (R ~ 60,000) circular spectropolarimetry of the classical T Tauri star TW Hydrae. We analyze 12 photospheric absorption lines and measure the net longitudinal magnetic field for 6 consecutive nights. While no net polarization is detected the first five nights, a significant photospheric field of Bz = 149 \pm 33 G is found on the sixth night. To rule out spurious instrumental polarization, we apply the same analysis technique to several non-magnetic telluric lines, detecting no significant polarization. We further demonstrate the reality of this field detection by showing that the splitting between right and left polarized components in these 12 photospheric lines shows a linear trend with Lande g-factor times wavelength squared, as predicted by the Zeeman effect. However, this longitudinal field detection is still much lower than that which would result if a pure dipole magnetic geometry is responsible for the mean magnetic field strength of 2.6 kG previously reported for TW Hya. We also detect strong circular polarization in the He I 5876 and the Ca II 8498 emission lines, indicating a strong field in the line formation region of these features. The polarization of the Ca II line is substantially weaker than that of the He I line, which we interpret as due to a larger contribution to the Ca II line from chromospheric emission in which the polarization signals cancel. However, the presence of polarization in the Ca II line indicates that accretion shocks on Classical T Tauri stars do produce narrow emission features in the infrared triplet lines of Calcium.Comment: One tar file. The paper has 22 pages, 5 figures. Accepted by AJ on Sep 10, 200

    Searching for Earth analogues around the nearest stars: the disk age-metallicity relation and the age distribution in the Solar Neighbourhood

    Full text link
    The chemical composition of Earth's atmosphere has undergone substantial evolution over the course of its history. It is possible, even likely, that terrestrial planets in other planetary systems have undergone similar changes; consequently, the age distribution of nearby stars is an important consideration in designing surveys for Earth-analogues. Valenti & Fischer (2005) provide age and metallicity estimates for 1039 FGK dwarfs in the Solar Neighbourhood. Using the Hipparcos catalogue as a reference to calibrate potential biases, we have extracted volume-limited samples of nearby stars from the Valenti-Fischer dataset. Unlike other recent investigations, our analysis shows clear evidence for an age-metallicity relation in the local disk, albeit with substantial dispersion at any epoch. The mean metallicity increases from -0.3 dex at a lookback time of ~10 Gyrs to +0.15 dex at the present day. Supplementing the Valenti-Fischer measurements with literature data to give a complete volume-limited sample, the age distribution of nearby FGK dwarfs is broadly consistent with a uniform star-formation rate over the history of the Galactic disk. In striking contrast, most stars known to have planetary companions are younger than 5 Gyrs; however, stars with planetary companions within 0.4 AU have a significantly flatter age distribution, indicating that those systems are stable on timescales of many Gyrs. Several of the older, lower metallicity host stars have enhanced [alpha/Fe] ratios, implying membership of the thick disk. If the frequency of terrestrial planets is also correlated with stellar metallicity, then the median age of such planetary system is likely to be ~3 Gyrs. We discuss the implications of this hypothesis in designing searches for Earth analogues among the nearby stars.Comment: Accepted for publication in Ap

    Spin-Charge Separation in Two Dimensions - A Numerical Study

    Get PDF
    The question of spin-charge separation in two-dimensional lattices has been addressed by numerical simulations of the motion of one hole in a half-filled band. The calculations have been performed on finite clusters with Hubbard and t-J models. By comparing the time evolution of spin and charge polarisation currents in one and two dimensions, evidence in favor of spin-charge separation in two dimensions is presented. In contrast with this, spin-charge separation is absent in a highly doped, metallic, system.Comment: RevTeX 3.0, 10 Pages, 6 PostScript Figures (on request

    First Detection of the White-Dwarf Cooling Sequence of the Galactic Bulge

    Full text link
    We present Hubble Space Telescope data of the low-reddening Sagittarius window in the Galactic bulge. The Sagittarius Window Eclipsing Extrasolar Planet Search field (3'x3'), together with three more Advanced Camera for Surveys and eight Wide Field Camera 3 fields, were observed in the F606W and F814W filters, approximately every two weeks for two years, with the principal aim of detecting a hidden population of isolated black holes and neutron stars through astrometric microlensing. Proper motions were measured with an accuracy of ~0.1 mas/yr (~4 km/s) at F606W~25.5 mag, and better than ~0.5 mas/yr (20 km/s) at F606W~28 mag, in both axes. Proper-motion measurements allowed us to separate disk and bulge stars and obtain a clean bulge color-magnitude diagram. We then identified for the first time a white dwarf (WD) cooling sequence in the Galactic bulge, together with a dozen candidate extreme horizontal branch stars. The comparison between theory and observations shows that a substantial fraction of the WDs (30%) are systematically redder than the cooling tracks for CO-core H-rich and He-rich envelope WDs. This evidence would suggest the presence of a significant number of low-mass WDs and WD - main sequence binaries in the bulge. This hypothesis is further supported by the finding of two dwarf novae in outburst, two short-period (P < 1 d) ellipsoidal variables, and a few candidate cataclysmic variables in the same field.Comment: 9 pages, 5 figures, accepted for publication on Ap

    A bioeconomic analysis of the potential of seaweed Hypnea pseudomusciformis farming to different targeted markets.

    Get PDF
    Simulations were performed to evaluate the economic potential of farming the seaweed Hypnea pseudomusciformis in two production scales for the carrageenan, human food, and glycolic extract markets in Brazil
    corecore