8 research outputs found

    Determination of regional lung air volume distribution at mid-tidal breathing from computed tomography: A retrospective study of normal variability and reproducibility

    Get PDF
    © 2014 Fleming et al.; licensee BioMed Central Ltd. Background: Determination of regional lung air volume has several clinical applications. This study investigates the use of mid-tidal breathing CT scans to provide regional lung volume data.Methods: Low resolution CT scans of the thorax were obtained during tidal breathing in 11 healthy control male subjects, each on two separate occasions. A 3D map of air volume was derived, and total lung volume calculated. The regional distribution of air volume from centre to periphery of the lung was analysed using a radial transform and also using one dimensional profiles in three orthogonal directions.Results: The total air volumes for the right and left lungs were 1035 +/- 280 ml and 864 +/- 315 ml, respectively (mean and SD). The corresponding fractional air volume concentrations (FAVC) were 0.680 +/- 0.044 and 0.658 +/- 0.062. All differences between the right and left lung were highly significant (p < 0.0001). The coefficients of variation of repeated measurement of right and left lung air volumes and FAVC were 6.5% and 6.9% and 2.5% and 3.6%, respectively. FAVC correlated significantly with lung space volume (r = 0.78) (p < 0.005). FAVC increased from the centre towards the periphery of the lung. Central to peripheral ratios were significantly higher for the right (0.100 +/- 0.007 SD) than the left (0.089 +/- 0.013 SD) (p < 0.0001).Conclusion: A technique for measuring the distribution of air volume in the lung at mid-tidal breathing is described. Mean values and reproducibility are described for healthy male control subjects. Fractional air volume concentration is shown to increase with lung size.Air Liquid

    The importance of correction for tissue fraction effects in lung PET: preliminary findings

    No full text
    Purpose It has recently been recognized that PET/CT may play a role in diffuse parenchymal lung disease. However, interpretation can be confounded due to the variability in lung density both within and between individuals. To address this issue a novel correction method is proposed. Methods A CT scan acquired during shallow breathing is registered to a PET study and smoothed so as to match the PET resolution. This is used to derive voxel-based tissue fraction correction factors for the individual. The method was evaluated in a lung phantom study in which the lung was simulated by a Styrofoam/water mixture. The method was further evaluated using (18)F-FDG in 12 subjects free from pulmonary disease where ranges before and after correction were considered. Results Correction resulted in similar activity concentrations for the lung and background regions, consistent with the experimental phantom set-up. Correction resulted in reduced inter- and intrasubject variability in the estimated SUV. The possible application of the method was further demonstrated in five subjects with interstitial lung changes where increased SUV was demonstrated. Single study pre- and post-treatment studies were also analysed to further illustrate the utility of the method. Conclusion The proposed tissue fraction correction method is a promising technique to account for variability of density in interpreting lung PET studies
    corecore