2 research outputs found

    The SMC X-ray binary SXP4.78: A new Type II outburst and the identification and study of the optical counterpart

    Full text link
    SXP4.78 was originally discovered in 2000 as a pulsar in the Small Magellanic Cloud by the Rossi X-ray Timing Explorer, but it was not spatially located at that time. A new detection in 2018 with the Neil Gehrels Swift Observatory during a Type II outburst permitted its position to be accurately located and its optical counterpart to be identified.We report X-ray and optical monitoring covering epochs before and during the outburst. Using photometric data, we show the long-term variability of the Be disc where we present flux and colour changes associated with the disc growth and decay over a period of ∼ 6000 d. We show evidence of disc growth during the recent outburst through an increase in the HÁ equivalent width and photometric flux. Period analysis was performed using both optical photometric and spectroscopic data, but with no significant detection of an orbital period. A modest periodic signature of 2.65 d was detected from the Optical Gravitational Lensing Experiment (OGLE) I-band data, but we attribute that to the non-radial pulsations of the Be star.We also obtained a blue spectrum from the Southern African Large Telescope, which permits us to classify the spectral type as B0.5 IVCV

    Optical and X-ray study of the peculiar high-mass X-ray binary XMMU J010331.7-730144

    Full text link
    For a long time XMMU J010331.7−730144 was proposed as a high-mass X-ray binary candidate based on its X-ray properties, however, its optical behaviour was unclear – in particular previous observations did not reveal key Balmer emission lines. In this paper, we report on optical and X-ray variability of the system. XMMU J010331.7–730144 has been monitored with the Optical Gravitational Lensing Experiment (OGLE) in the I and V bands for the past 9 yr where it has shown extremely large amplitude outbursts separated by long periods of low-level flux. During its most recent optical outburst we obtained spectra with the Southern African Large Telescope (SALT) where, for the first time, the H α line is seen in emission, confirming the Be nature of the optical companion. The OGLE colour–magnitude diagrams also exhibit a distinct loop that is explained by changes in mass-loss from the Be star and mass outflow in its disc. In the X-rays, XMMU J010331.7−730144 has been monitored by the Neil Gehrels Swift Observatory through the S-CUBED programme. The X-ray flux throughout the monitoring campaign shows relatively low values for a typical Be/X-ray binary system. We show, from the analysis of the optical data, that the variability is due to the Be disc density and opacity changing rather than its physical extent as a result of efficient truncation by the NS. The relatively low X-ray flux can then be explained by the neutron star normally accreting matter at a low rate due to the small radial extent of the Be disc
    corecore