74 research outputs found

    Mapping effective connectivity in the human brain with concurrent intracranial electrical stimulation and BOLD-fMRI

    Get PDF
    BACKGROUND: Understanding brain function requires knowledge of how one brain region causally influences another. This information is difficult to obtain directly in the human brain, and is instead typically inferred from resting-state fMRI. NEW METHOD: Here, we demonstrate the safety and scientific promise of a novel and complementary approach: concurrent electrical stimulation and fMRI (es-fMRI) at 3 T in awake neurosurgical patients with implanted depth electrodes. RESULTS: We document the results of safety testing, actual experimental setup, and stimulation parameters, that safely and reliably evoke activation in distal structures through stimulation of amygdala, cingulate, or prefrontal cortex. We compare connectivity inferred from the evoked patterns of activation with that estimated from standard resting-state fMRI in the same patients: while connectivity patterns obtained with each approach are correlated, each method produces unique results. Response patterns were stable over the course of 11 min of es-fMRI runs. COMPARISON WITH EXISTING METHOD: es-fMRI in awake humans yields unique information about effective connectivity, complementing resting-state fMRI. Although our stimulations were below the level of inducing any apparent behavioral or perceptual effects, a next step would be to use es-fMRI to modulate task performances. This would reveal the acute network-level changes induced by the stimulation that mediate the behavioral and cognitive effects seen with brain stimulation. CONCLUSIONS: es-fMRI provides a novel and safe approach for mapping effective connectivity in the human brain in a clinical setting, and will inform treatments for psychiatric and neurodegenerative disorders that use deep brain stimulation

    Morphological correlates to cognitive dysfunction in schizophrenia as studied with Bayesian regression

    Get PDF
    BACKGROUND: Relationships between cognitive deficits and brain morphological changes observed in schizophrenia are alternately explained by less gray matter in the brain cerebral cortex, by alterations in neural circuitry involving the basal ganglia, and by alteration in cerebellar structures and related neural circuitry. This work explored a model encompassing all of these possibilities to identify the strongest morphological relationships to cognitive skill in schizophrenia. METHODS: Seventy-one patients with schizophrenia and sixty-five healthy control subjects were characterized by neuropsychological tests covering six functional domains. Measures of sixteen brain morphological structures were taken using semi-automatic and fully manual tracing of MRI images, with the full set of measures completed on thirty of the patients and twenty controls. Group differences were calculated. A Bayesian decision-theoretic method identified those morphological features, which best explained neuropsychological test scores in the context of a multivariate response linear model with interactions. RESULTS: Patients performed significantly worse on all neuropsychological tests except some regarding executive function. The most prominent morphological observations were enlarged ventricles, reduced posterior superior vermis gray matter volumes, and increased putamen gray matter volumes in the patients. The Bayesian method associated putamen volumes with verbal learning, vigilance, and (to a lesser extent) executive function, while caudate volumes were associated with working memory. Vermis regions were associated with vigilance, executive function, and, less strongly, visuo-motor speed. Ventricular volume was strongly associated with visuo-motor speed, vocabulary, and executive function. Those neuropsychological tests, which were strongly associated to ventricular volume, showed only weak association to diagnosis, possibly because ventricular volume was regarded a proxy for diagnosis. Diagnosis was strongly associated with the other neuropsychological tests, implying that the morphological associations for these tasks reflected morphological effects and not merely group volumetric differences. Interaction effects were rarely associated, indicating that volumetric relationships to neuropsychological performance were similar for both patients and controls. CONCLUSION: The association of subcortical and cerebellar structures to verbal learning, vigilance, and working memory supports the importance of neural connectivity to these functions. The finding that a morphological indicator of diagnosis (ventricular volume) provided more explanatory power than diagnosis itself for visuo-motor speed, vocabulary, and executive function suggests that volumetric abnormalities in the disease are more important for cognition than non-morphological features

    Prefrontal cortex gyrification index in twins: an MRI study

    Get PDF
    Cortical development and folding seems to be under environmental as well as genetic control. The aim of our study was to estimate the genetic influence on gyrification and cortical volumes, comparing prefrontal gyrification index (GI) in monozygotic (MZ) and dizygotic (DZ) twin pairs, and unrelated pairs. Twenty-four subjects (6 pairs of MZ and 6 pairs of DZ twins) were included in this study. Prefrontal cortical folding (gyrification) was measured by an automated and manual version of the gyrification index (A-GI, M-GI) according to previously published protocols. MR-imaging was performed and 3 representative slices were selected from coronar MR-imaging scans. The volumes of the total brain, temporal lobes, prefrontal lobes, and cerebellum were analyzed, too. To evaluate similarity in GI, absolute differences in GI, and brain volumes as well as intraclass correlations of twin pairs were compared with regard to twin status. Finally, a control group of unrelated pairs was assembled from the first two study groups and analyzed. Compared to unrelated pairs, twin pairs exhibited more similarity concerning different brain volumes and a trend to more similarity concerning A-GI. MZ twins did not present more similarity concerning GI (automatically and manually measured) and volume measurements compared to DZ twins. Different factors, like intrauterine factors, postnatal development conditions, and especially environmental factors might account for the differences between related and unrelated pairs. The nonexistence of a pronounced similarity in MZ twins compared to DZ twins concerning prefrontal GI raises questions about the extent of genetic influence on GI

    Cortico-cerebellar functional connectivity and sequencing of movements in schizophrenia

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Abnormal execution of several movements in a sequence is a frequent finding in schizophrenia. Successful performance of such motor acts requires correct integration of cortico-subcortical processes, particularly those related to cerebellar functions. Abnormal connectivity between cortical and cerebellar regions with resulting cognitive dysmetria has been proposed as the core dysfunction behind many signs and symptoms of schizophrenia. The aim of the present study was to assess if these proposed abnormalities in connectivity are a unifying feature of schizophrenia, or, rather, reflect a specific symptom domain of a heterogeneous disease. We predicted that abnormal functional connectivity between the motor cortex and cerebellum would be linked with abnormal performance of movement sequencing.</p> <p>Methods</p> <p>We examined 24 schizophrenia patients (SCH) and 24 age-, sex-, and handedness-matched healthy controls (HC) using fMRI during a modified finger-tapping task. The ability to perform movement sequencing was tested using the Neurological Evaluation Scale (NES). The subjects were categorized into two groups, with (SQ+) and without (SQ-) movement sequencing abnormalities, according to the NES-SQ score. The effects of diagnosis and movement sequencing abnormalities on the functional connectivity parameters between the motor cortex and cerebellum (MC-CRBL) and the supplementary motor cortex and cerebellum (SMA-CRBL) activated during the motor task were analyzed.</p> <p>Results</p> <p>We found no effect of diagnosis on the functional connectivity measures. There was, however, a significant effect on the SQ group: SQ + patients showed a lower level of MC-CRBL connectivity than SQ- patients and healthy controls. Moreover, the level of MC-CRBL and SMA-CRBL negatively correlated with the magnitude of NES-SQ abnormalities, but with no other NES domain.</p> <p>Conclusions</p> <p>Abnormal cortico-cerebellar functional connectivity during the execution of a motor task is linked with movement sequencing abnormalities in schizophrenia, but not with the diagnosis of schizophrenia per se. It seems that specific patterns of inter-regional connectivity are linked with corresponding signs and symptoms of clinically heterogeneous conditions such as schizophrenia.</p

    Reduced prefrontal gyrification in obsessiveā€“compulsive disorder

    Get PDF
    Structural magnetic resonance imaging (MRI) studies reveal evidence for brain abnormalities in obsessiveā€“compulsive disorder (OCD), for instance, reduction of gray matter volume in the prefrontal cortex. Disturbances of gyrification in the prefrontal cortex have been described several times in schizophrenia pointing to a neurodevelopmental etiology, while gyrification has not been studied so far in OCD patients. In 26 OCD patients and 38 healthy control subjects MR-imaging was performed. Prefrontal cortical folding (gyrification) was measured bilaterally by an automated version of the automated-gyrification index (A-GI), a ratio reflecting the extent of folding, from the slice containing the inner genu of the corpus callosum up to the frontal pole. Analysis of covariance (ANCOVA, independent factor diagnosis, covariates age, duration of education) demonstrated that compared with control subjects, patients with OCD displayed a significantly reduced A-GI in the left hemisphere (pĀ =Ā 0.021) and a trend for a decreased A-GI in the right hemisphere (pĀ =Ā 0.076). Significant correlations between prefrontal lobe volume and A-GI were only observed in controls, but not in OCD patients. In conclusion, prefrontal hypogyrification in OCD patients may be a structural correlate of the impairment in executive function of this patient group and may point to a neurodevelopmental origin of this disease

    Assessment of brain age in posttraumatic stress disorder: Findings from the ENIGMA PTSD and brain age working groups

    Get PDF
    BACKGROUND: Posttraumatic stress disorder (PTSD) is associated with markers of accelerated aging. Estimates of brain age, compared to chronological age, may clarify the effects of PTSD on the brain and may inform treatment approaches targeting the neurobiology of aging in the context of PTSD. METHOD: Adult subjects (NĀ =Ā 2229; 56.2% male) aged 18-69 years (meanĀ =Ā 35.6, SDĀ =Ā 11.0) from 21 ENIGMA-PGC PTSD sites underwent T1-weighted brain structural magnetic resonance imaging, and PTSD assessment (PTSD+, nĀ =Ā 884). Previously trained voxel-wise (brainageR) and region-of-interest (BARACUS and PHOTON) machine learning pipelines were compared in a subset of control subjects (nĀ =Ā 386). Linear mixed effects models were conducted in the full sample (those with and without PTSD) to examine the effect of PTSD on brain predicted age difference (brain PAD; brain age - chronological age) controlling for chronological age, sex, and scan site. RESULTS: BrainageR most accurately predicted brain age in a subset (nĀ =Ā 386) of controls (brainageR: ICCĀ =Ā 0.71, RĀ =Ā 0.72, MAEĀ =Ā 5.68; PHOTON: ICCĀ =Ā 0.61, RĀ =Ā 0.62, MAEĀ =Ā 6.37; BARACUS: ICCĀ =Ā 0.47, RĀ =Ā 0.64, MAEĀ =Ā 8.80). Using brainageR, a three-way interaction revealed that young males with PTSD exhibited higher brain PAD relative to male controls in young and old age groups; old males with PTSD exhibited lower brain PAD compared to male controls of all ages. DISCUSSION: Differential impact of PTSD on brain PAD in younger versus older males may indicate a critical window when PTSD impacts brain aging, followed by age-related brain changes that are consonant with individuals without PTSD. Future longitudinal research is warranted to understand how PTSD impacts brain aging across the lifespan

    High and low levels of an NTRK2-driven genetic profile affect motor- and cognition-associated frontal gray matter in prodromal Huntingtonā€™s disease

    Get PDF
    This study assessed how BDNF (brain-derived neurotrophic factor) and other genes involved in its signaling influence brain structure and clinical functioning in pre-diagnosis Huntingtonā€™s disease (HD). Parallel independent component analysis (pICA), a multivariate method for identifying correlated patterns in multimodal datasets, was applied to gray matter concentration (GMC) and genomic data from a sizeable PREDICT-HD prodromal cohort (N = 715). pICA identified a genetic component highlighting NTRK2, which encodes BDNFā€™s TrkB receptor, that correlated with a GMC component including supplementary motor, precentral/premotor cortex, and other frontal areas (p < 0.001); this association appeared to be driven by participants with high or low levels of the genetic profile. The frontal GMC profile correlated with cognitive and motor variables (Trail Making Test A (p = 0.03); Stroop Color (p = 0.017); Stroop Interference (p = 0.04); Symbol Digit Modalities Test (p = 0.031); Total Motor Score (p = 0.01)). A top-weighted NTRK2 variant (rs2277193) was protectively associated with Trail Making Test B (p = 0.007); greater minor allele numbers were linked to a better performance. These results support the idea of a protective role of NTRK2 in prodromal HD, particularly in individuals with certain genotypes, and suggest that this gene may influence the preservation of frontal gray matter that is important for clinical functioning.This project was supported by 1U01NS082074 (V.C. and J.T., co-principal investigators) from the National Institutes of Health, National Institute of Neurological Disorders and Stroke. The PREDICT-HD study was supported by NIH/NINDS grant 5R01NS040068 awarded to J.P.; CHDI Foundation, Inc., A3917 and 6266 awarded to J.P.; Cognitive and Functional Brain Changes in Preclinical Huntingtonā€™s Disease (HD) 5R01NS054893 awarded to J.P.; 4D Shape Analysis for Modeling Spatiotemporal Change Trajectories in Huntingtonā€™s 1U01NS082086; Functional Connectivity in Premanifest Huntingtonā€™s Disease 1U01NS082083; and Basal Ganglia Shape Analysis and Circuitry in Huntingtonā€™s Disease 1U01NS082085 awarded to Christopher A. Ross
    • ā€¦
    corecore